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Abstract. Understanding why the original project of Artifiti Intelligence is

widely regarded as a failure and has been abandavesh by most of
contemporary Al research itself may prove crucial achieving synthetic
intelligence. Here, we take a brief look at somiagiples that we might consider
to be lessons from the past five decades of Al. dutbor's own Al architecture —
MicroPsi — attempts to contribute to that discussio
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I ntroduction

When the Atrtificial Intelligence (Al) movement seff fifty years ago, it bristled with
ideas and optimism, which have arguably both wasiece. While Al as a method of
engineering has continuously and successfully sem® the pioneer battalion of
computer science, Al's tenet as a method of undedishg and superseding human
intelligence and mind is widely considered a fadluand it is easy to imagine that a
visit to one of today’s Al conferences must be besimg experience to the enthusiasts
of the 1950es. The field has regressed into a tuadéi of relatively well insulated
domains like logics, neural learning, case basadaming, artificial life, robotics, agent
technologies, semantic web, etc., each with thein goals and methodologies. The
decline of the idea of studyirigtelligence per seas opposed to designing systems that
perform tasks that would require some measure tdlligence in humans, has
progressed to such a degree that we must now renhen@riginal Al idea into
Artificial General Intelligence And during that same period of fifty years, supgor
that very idea declined outside computer sciencewval: where the cybernetics
movement influenced the social sciences, the phypllog of mind and psychology, the
world around us is now a place much more hostileAlothan in the past. The
philosophy of mind seems to be possessed and eadrhgr “explanatory gaps” and
haunted by the ghosts of the mystical “first perpenspective” [1] and “irreducible
phenomenal experience” [2], and occasionally eatical substance dualism [3, 4].
Attempts in psychology at overarching theorieshef inind have been all but shattered
by the influence of behaviorism, and where cogaifpsychology as sprung up in its
tracks, it rarely acknowledges that there is soingtlas “intelligence per se”, as
opposed to the individual performance of a groupsuaibjects in an isolated set of
experiments.
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Al's gradual demotion from a science of the mindthe nerdy playpen of
information processing engineering was accompanigst by utterances of
disappointment, but by a chorus of glee, unitingsthwary of human technological
hubris with the same factions of society that use@ppose evolutionary theory or
materialistic monism for reasons deeply ingraimgd ivestern cultural heritage.

Despite the strong cultural opposition that it ale/anet, the advent of Al was no
accident. Long ago, physics and other natural senhad subscribed to the
description of their domains (i.e. the regularitieghe patterns as which the universe
presents itself to us) using formal languageshinwords of information science, this
means that theories in the natural sciences hashieecomputation&i By the 1950es,
information processing hardware, theory and cultuae progressed so far that the
nascence of a natural science of mind as a conpudghiphenomenon was inevitable.
And despite the cultural struggles and variousrietdgical dead-ends that Al has run
into, despite its failure as a science and itsiglising metamorphosis into an
engineering discipline, the author believes thatriéady has managed to uncover most
of the building blocks of its eventual successill ty to hint at some of these lessons.

The second and final section of this paper will ul®con an architecture
implementing motivation in an Al system. MicroPE & cognitive model that
represents the author’'s attempt to contribute ® discussion of Artificial General
Intelligence (AGI), and here, | will give a veryidiroverview.

Principles of synthetic intelligence

Understanding the apparent failure of Al as a s@eimvolves naming some of the
traps it fell into, and participating in the endeawf AGI will require highlighting
some of Al's original creeds. Naturally, my contrion to this ongoing discussion is
going to be incomplete, slightly controversial aadtainly error-prone.

1. Build whole functionalist architectures.

There are two aspects to that slogan: First, wénaneed ofunctionalist architectures
That is, we need to make explicit what entities are going to research, what
constitutes these entities conceptually, and howmag capture these concepts. For
instance, if we are going to research emotion, kinmmroducing a variable named
“anger” or “pity” will not do. Rather, we will neetb explain what exactly constitutes
anger and pity within the system of a cognitiverdag®/e will — among other things —
need to acknowledge that anger and pity have abjbet require the perception and
representation of (social) situations, and equiproadel with these. We will have to
capture that anger or pity have very different waysaffecting and modulating
perception, learning, action selection and plannmgmory and so on — and we have to
depict these differences. To explicate concepteulyidg intelligence and mind is to
get away fromessentialist intuitiongfor instance the idea that emotion, personhood,

2 |In the sense that natural sciences assume tmaalf¢r.e. computational) theories are adequatafiuce
their respective subject, the universe itself momputational phenomenon. This is not a strongrckas it
may seem to some, because it merely entails teatiniverse presents itself as information pattéorihe
systemic interface of the experimenter with hifier domain, and that these patterns are betessanand
sufficientfor the experiment’'s measurement.



normative behavior, consciousness and so orajeéstatndare done by some modue
correspond to some paraméteand to replace them by fanctional structurethat
produces the set of phenomena that we associdtghgitrespective concepts.

Second, we neecbmpleteandintegratedsystems. Isolated properties will not do,
for perception is intrinsically related to delibgoa, deliberation to emotion, emotion
to motivation, motivation to learning and so on.eTattempt to reduce the study of
intelligence to a single aspect, such as reasamirrgpresentation is like reducing the
study of a car-engine to combustion, temperatwetdltions or rotational movement.

2. Avoid methodologism

When we grow up to be Al researchers, we are eedipyith the beautiful tools our
computer science departments have to offer, suaragsh theory, binary, modal and
fuzzy logic, description languages, statistical hoels, learning paradigms,
computational linguistics, and so on. As we discdkie power of these tools, they tend
to turn into the proverbial hammers that make ethéng look like a nail. Most Al
researchers that abandoned the study of intellgeitt not do so because they ran into
difficulties along that course, but because thegnad to some different (worthy)
subject, like the study of graph-coloring, the ioygment of databases, the design of
programming languages, the optimization of interrsgfents, the definition of
ontologies. However, there is currently no reason think that understanding
intelligence will be a by-product of proving theoperties of our favorite description
language, or the application of our favorite plantea new domain of the funding
agencies choosing. We will need to ask questiomsfisnal methods to answer them,
instead of the other way around.

3. Aim for the big picture, not the individual exipgent

Our understanding of intelligence will have to kaséd on the integration of research
of the cognitive sciences, possibly in a similamvas the medieval and renaissance
map-makers had to draw on the data made availaplerdvelers, tradesmen,
geographers, geometers and explorers of their tithest as these map-makers pieced
together a map of the world from many sources td,dae will have to draw a map of
cognition and the mind by integrating the knowledfenany disciplines. Our current
world maps are not the result of choosing a smather of a small village and
improving the available measurements there, bectlusse measurements are not
going to add up into a unified picture of geograpligefore that happens, the
landscape is likely going to change so much asakenour measurements meaningless
for the big picture.) Our first proper maps weré patchworks of infinitesimally small
measurements, but the product of gradual improvésrefrabig picture

Disciplines that are concerned with individual meaments often sport
methodologies that are incompatible with sketchiig pictures. Note that Albert
Einstein did not do a single experiment whilst dasig the theory of relativity —
instead, he noted and expressed the constrairgeriesl by the data that was already
available. Likewise, the study of AGI aims at afiga theory, and such a theory is
going to be the product of integration rather tepacialization.

This point is likely a controversial one to makiece it seems to insinuate that the
exploration of specific topics in Al is futile amelevant, which of course it not the case
— itis just unlikely to result in an understandisfggeneralintelligence.



4. Build grounded systems, but do not get entanigl¢he Symbol Grounding Problem

Early Al systems tended to constrain themselvesnioro-domains that could be
sufficiently described using simple ontologies dpidary predicate logics [5], or
restricted themselves to hand-coded ontologiesyetber. It turned out that these
approaches did not scale to capturing richer ancerheterogeneous domains, such as
playing a game of soccer, navigating a crowded raoamslating a novel and so on.
This failure has opened many eyes to skebol grounding problerj6], i.e. how to
make symbols used by an Al system refer to theggraneaning”. Because of the
infinitude and heterogeneity of content that arelligent system must be capable of
handling to satisfy a multitude of conflicting arelolving demands (after all,
intelligence is the answer to that problem), Alteyss will have to be equipped with
methods of autonomously making sense of their wooldfinding and exploiting
structure in their environment. Currently, it seeabsar that binary predicate logic
reasoners are not well equipped for that task, medtal content will have to be
expressed using hierarchical spreading activatetwaorks of some kind. Al systems
will probably have to begerceptual symbol systepas opposed tamodal symbol
systemgsee Fig. 1) [7], that is, the components of thepresentations will have to be
spelled out in a language that captures the richnésidity, heterogeneity and
affordance orientation of perceptual and imagiramtent.
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Figure 1: Modal representations, as opposed to amodalseptations [7]

There is a different, stronger reading of the syhgivounding problem that has begun
to haunt Al ever since Brooks’ early approach dfding simple physically embodied
machinery [7], and which is well exemplified in JoBearle’s famous “Chinese room”



metaphor [8]. This reading expresses the intuitiat “mere” symbol manipulation or
information processing would never be able to a&ptie “true meaning” of things “in
the real world”. The symbol grounding problem head to the apostasy of those
factions within the“Nouvelle Al” movement that came to believe that “a software
agent can never be intelligent” [10, 11], as ifyotile divine touch of the “real reality”
could ever infect a system with the mystical spafffkknowing “true meaning”. As a
consequence, the protagonists of “Nouvelle Al” hakandoned the study of language,
planning, mental representation in favor of puembodied systems”, such as passive
walkers and insectoid robots.

5. Do not wait for the rapture of robotic embodirhen

Even to the hardened eye of this author, it isifeding to see a little robot stretching
its legs. Eventually, though, the level of intedlice of a critter is not measured by the
number of its extremities, but by its capabilities representing, anticipating and
acting on its environment, in other words, not tsylirawns but by its brains. Insects
may continue to rule the planet long after humadikias vanished, but that does not
make them smarter than us. There may be practiestipns to build robots instead of
virtual agents, but the robotics debate in Al igally not about practicality:

Unfortunately, a lot of research into Al robotsfigled by thestrong senseof
“meaning” originating in a Searle style conceptafrthe Symbol Grounding problem
This sense of meaning, however, can itself notrbargled! For any intelligent system,
whether a virtual software agent or a physicallypedied robot (including us humans),
the environment presents itself as a setlyfamic patternat the systemic interface
(for instance, the sensdrgerves). For all practical purposes, the univésse pattern
generator, and the mind “makes sense” of theserpatby encoding them according to
the regularities it can find. Thus, the represémmadf a concept in an intelligent system
is not a pointer to a “thing in reality”, but a saft hierarchical constraints over (for
instance perceptual) data. The encoding of pattiatsis represented in an intelligent
system can not be described as “capturing true mgarwithout the recourse of
epistemologically abject realist notions; the dyatif a world model eventually does
not amount to how “truly” if depicts “reality”, buhow adequately it encodes the
(sensory) patterris.

Even though the advocates®trong Symbol Groundingre mistaken, and there is
no epistemological reason why the set of patterasagsociate with our concept of a
physical universe (i.e. “real things”) and that feed into our Al model should not
originate in an artificial pattern generator (s@asha virtual world), there are practical
difficulties with purely virtual agents: Virtual gmonments tend to lack richness of
presentation, and richness of internal structure.

Where experimenters specify virtual environmeriteytusually encode structures
and details with certain pre-specified tasks anlogies in mind, thereby restricting
the Al agent situated in such an environment tortheiscovery of these tasks and

% Note that the perceptual input of a system is detaly made up of sensory input, for it can pereeis
output only insofar it is provided by additionahsers. So, without loss of generality, sensory d&emming
from sensor-actor coupling of a system are jugiexific sub-class of sensory data in general. Ehis/ no
means a statement on how an Al system shouldgessbr-actor coupling, however.

“ The adequacy of an encoding over the patternsréfpaésent an environment can be measured in terms
such as completeness, consistency, stability, epess, relevance to a motivational sub-system and
computational cost of acquisition.



limited ontologies and depriving it of opportungiéor discovery and invention. Hand-
crafted virtual environments (such as virtual sod&@] or role-playing game worlds)
are probably much too simplistic to act as a beramkmroblem for AGI. Limited real-
world problems, such as robotic soccer or the raidg of a car through a desert,
suffer from the same shortcoming. If we take owerdg from the confines of a virtual
micro-world into the confines of a physical micrend, the presented environment
still falls short on establishing a benchmark tteafuires AGI.

On the other hand, there are virtual environmentexistence that sport both
structural and presentational richness to a degwe®garable to the physical and social
world, first among them the World Wide Web. Ever thcean of digitized literature
might be sufficient: Humankind'’s electronic libresiare spanning orders of magnitude
more bits of information than what an individualnien being is confronted with
during their lifetime, and the semantics of the llotonceptualized in novels and
textbooks inherits its complexity from the physi@ald social environment of their
authors. If it is possible for an intelligence gymstto extract and encode this complexity,
it should be able to establish similar constraistmilar conceptual ontologies, as it
would have while residing in a socially and phyBjcambedded robotic body.

Robots are therefore not going to be the singuwater to achieving AGI, and
successfully building robots that are performinglwe a physical environment does
not necessarily engender the solution of the problef AGI. Whether robotics or
virtual agents will be first to succeed in the dualsachieving AGI remains an open
guestion.

6. Build autonomous systems

As important as it is to integrate perception, mpmaeasoning and all the other
faculties that an intelligent system employs toche#is goals is integration of goal-
setting itself. General intelligence is not onle thbility to reach a given goal (and
usually, there is some very specialized, but maeligent way to reach a singular
fixed goal, such as winning a game of chess), teitdes the setting of novel goals,
and most important of all, about exploration. Hunraelligence is the answer to living
in a world that has to be negotiated to serve ditmdé of conflicting demands. This
makes it a good reason to believe that an envirohméh fixed tasks, scaled by an
agent with pre-defined goals is not going to mak@ad benchmark problem for AGI.

The motivation to perform any action, such as eatavoiding pain, exploring,
planning, communicating, striving for power, does arise from intelligence itself, but
from a motivational system underlying all directdahavior. In specifying a
motivational system, for instance as a set of actirfg drives, we have to make sure
that every purposeful action of the system corredpdo one of its demands; there is
no reason that could let us take behavioral teridsrsuch as self-preservation, energy
conservation, altruistic behavior for granted —ythéll have somehow to be designed
into the system (whereby ‘somehow’ includes evohiry methods, of course).



7. The emergence of intelligence is not going foplea all by itself

While the proposal of AGI osynthetic intelligencds based on a computational
monism,® dualist intuitions are still widespread in westecnlture and in the
contemporary philosophy of mind, and they are rwhg to give in without a fight.
Because a naked ontological dualism between middady/world is notoriously hard
to defend, it is sometimes covered up by wedgiegatbpular notion oémergencénto
the “explanatory gap” [13]. Despite the steady pesg of neuroscience and
computational models of neural activity, there iseanergentist proposal that assumes
so-called “strong emergence,” which proposes that the intelligent mind, pogsibl
including human specifics such as social personhoadotivation, self-
conceptualization and phenomenal experience, arerdbult of non-decomposable
intrinsic properties of interacting biological nens, or of some equally non-
decomposable resonance process between brainkaptiytsical world. Thus, “strong
emergence” is basically an anti-Al proposal.

Conversely,“weak emergence’is what characterizes the relationship between a
state of a computer program and the electricalepatin the circuits of the same
computer, i.e. just the relationship between twadesoof description. In that sense,
emergent processes are not going to “make intelligeappear” in an information
processing system of sufficient complexity. We il need to somehow (on some
level of description) implement the functionalityat amounts to AGI into our models.

This brief summary of principles of synthetic itiggnce does not answer the main
question, of course: How do we capture the funetion of Artificial General
Intelligence? — In cognitive science, we currenbgive two major families of
architectures, which seem to be hard to recon@itee, the classical school, could be
characterized aBodorian Architecturesas they perceive thinking as the manipulation
of a language of thought [14], usually expressedhaset of rules and capable of
recursion. Examples, such as ACT [15] and Soar §tébuilt incrementally by adding
more and more functionality, in order to eventualghieve the powers inherent to
general intelligence. The other family favors dmited approaches [17, 18] and
constrainsa dynamic system with potentially astronomicallgny degrees of freedom
until the behaviors tantamount to general intetlicee are left. This may seem more
“natural” and well-tuned to the “brain-level” of siption, because brains are
essentially huge dynamical systems with a numbelocél and global constraints
imposed on them, and the evolution of brains froienrsized early mammalians to
homo sapienkas apparently not been a series of incremematifinal extensions, but
primarily a matter of scaling and local tuning. Yetany functional aspects of
intelligence, such as planning and language, anmeily much harder to depict using
the dynamical systems approach.

The recent decade has seen the advent of severarobitectures in Al, which try
to combine both approaches imauro-symbolidashion, such as Clarion [19], LIDA
[20], the MirrorBot [21] and the author’s own Mid®si [22], which will briefly be
introduced on the remaining pages.

® Computational monism itself amounts just to thbssuption of contemporary materialism. Cartesian
matter (‘res extensa’) sports unnecessary intripgdperties, such as locality and persistence, whet in
the way when doing contemporary physics. Today'ttené not the same wholesome solid as it usdgketo
in Laplace’s time and day; now it is just a shifgncept that we apply to encode the basic regigsuin
patterns presented to us by our environment.



The Ps theory and the MicroPsi ar chitecture

MicroPsi [22, 23] is an implementation of Dietriédrner’'s Psi theoryof mental
representation, information processing, perceptation control and emotion [24] as
an Al architecture. MicroPsi is an attempt to emptieé principles discussed above:

1. MicroPsi aims at explaining intelligence bynainimal orthogonal set of
mechanisms that together facilitate perception, representatimemory, attention,
motivation, emotion, decision-making, planning,leefion, language. These features
are not explained as parameters or modular comp&naut in terms of th&unction of
the whole system; for instance, emotions are explained as speciitfigurationsof
cognitive processing rather than as given paramsiebehavior is not the result of pre-
defined goal directed routines, but of a demandedrimotivational system and so on.

2. An integrated cognitive architecture will requihe recourse tmethods from
many disciplines, MicroPsi originates in theories of problem solyim psychology
and integrates ideas from gestalt theory, motivatigpsychology and experiments in
the study of emotion. Also, it has learned a lotfrcognitive modeling paradigms and
from representational strategies and learning nuistivo Al.

3. The facets of cognition are not seen as separaidules that could be
understood, tested and implemented one by oneherrahey are aspects of a broad
architecture. The modebmbines a neuro-symbolic theory of representation with a
top-down/bottom-up theory of perception, a hierarchical spreading activation
theory of memory with a modulation model of emotion, a demand/drive based
theory of dynamic physiological, cognitive and soamabtivation with a model of the
execution and regulatiomf behaviors.

4. Representations in MicroPsi are alwagsounded in environmental
interaction or abstractions thereof. It does not matter, hareW the environment is
simulated or physical.

5. The difficulty of providing a rich pre-programtheenvironment vs. the
limitations that come with robot engineering hagad toboth simulation worlds and
robotic experiments for MicroPsi agents. At the currerigst of development, we
seem to learn much more from simulations, though.

6. MicroPsi agents arautonomous, their behavior is governed by st of
primary urges which determine motives which in turn give riseittentions. All
behavior, including cognitive exploration and sbdaeraction, can be traced back to
one or more primary urges.

7. There are many aspects of intelligence that dfisr does not address well yet.
However, we do not believe that these will be awgitally spring into existence with
gradual improvements of the learning, represemtaiiointeraction modes of the model.
We think that thedeficits of MicroPs highlight specific mechanisms, for instance for
perceptual integration, language and self-monitprithat we have not sufficiently
understood to implement them. MicroPsi might pr@ssme interesting answers, but
more importantly, it helps to detail a lotudeful questions.

Representation in the Psi theory
The most basic elements in Ddrner’s representato@shreshold elements, which are

arranged into groups, callegiads These are made up of a central neuron, surrounded
by four auxiliary neurons acting as gates for theeading of activation through the



network. A network of quads amouts to a semantiooek with four link types, called
SUB SUR PORaANdRET. SUE stands for “has-part”. If an elemesatas asus-link to an
elementb, it means thaa has the part (or sometimes the propebtyguris the inverse
relation tosus and means “is-part”. I& is surlinked to b, thena is a part (or
sometimes a property) &f POR (from latin porro) is used as a causal (subjunctive),
temporal or structural ordering relation betweejaeeht elements. K has aPoRlink

to b, thena precedes (and sometimes leads to or even cduses) (from latin retro)

is the inverse relation teOR If there is arRET-link betweena andb, thena succeeds
(and sometimes is caused Iy

Quads make up perceptual schemas and frames: dodiviguads stand for
concepts. If they arsus/sur linked, a partonomic (has-part/is-part) relatiapsis
expressed. The lowest level of such a partononde {6 made up byerceptual
neurons andmotor neurons. They provide the grounding of the system’
representations, since they are directly linkethéosystem’s environment.

In MicroPsi, quads are extended to cover more batitions and are expressed by
concept nodedn addition to the basieORRET andSUB/SURIinks, they also offer link
types for taxonomic and labeling relationships.

Object schemas are organized as parts of situhtitaraes. The world model of
the system is established, reinforced or changechypothesis based perception
(“hypercept”). Hypercept is a paradigm that migatdescribed as follows:

- Situations and objects are always representéitearchical schemas that bottom
out in references to sensory input.

- Low-level stimuli trigger (bottom-up) those scheemypotheses they have part in.

- The hypotheses thus activated heed their alreadfirmed elements and attempt
(top-down) to get their additional elements vedfighich leads to the confirmation of
furthersus-hypotheses, or to the rejection of the currentotiypsis.

- The result of hypercept is the strongest activéteatching) hypothesis.

At any time, the systempre-activatesandinhibits a number of hierarchical schema
hypotheses, based on context, previous learnimggmulow-level input and additional
cognitive (for instance motivational) processesisTpre-activation speeds up the
recognition by limiting the search space.

Hypercept is not only used on visual images, bso @n inner imagery, memory
content, auditory data and symbolic language.

The current situational frame is stored as the ha@adhent of a growing protocol
chain, which is formed by decay and re-arrangenmotong-term memory.

Behavior Execution

A neuron that is not part of the currently regardedtex field is called aegister.
Neural programs are chains of registers that salbeiators, dissociators, activators and
inhibitors. (These “calls” are just activationstbé respective elements.) In the course
of neural execution, elements in the cortex fietd aummarily linked to specific
registers which are part of the executed chain @firons. Then, operations are
performed on them, before they are unlinked again.

Doérner describes a variety of cognitive behaviars drientation, anticipation,
planning, memory retrieval and so on, often aloriidp wossible implementations. [24,
25]



Motivation and Emotion

During action execution, the system establishesivemtbased on a set of primary
urges which are hard-wired. Currently, these ugessist of demands fduel, water,
intactnessaffiliation, competencandcertainty.
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Figure 2: Psi architecture

Fuel, water and intactness are examples of phygtdabneeds. Affiliation is &ocial
urge — to satisfy it, the system neef§liation signalsfrom other agents. Thus, Psi
agents may reward each oth€ompetenceneasures the ability to reach a given goal
and the ability to satisfy demands in general (oggotential). The urge farertainty

is satisfied by successful exploration of the emwnent and the consequences of
possible actions, and it is increased by violatiohexpectations. Competence and
certainty arecognitive urgesTogether they govern explorative strategies.

Every increase of an urge creates a negative remfieent signal, called
displeasure signalkonversely, a decrease of an urge resultspleasure signalThese
signals are used to strengthen links in the curnerdtocol and thus enable
reinforcement learning of behavior. At any timeg tBystem evaluates the urge
strengths and, based on an estimate of the congmefen reducing individual urges,
determines aurrently active motiveThis motive pre-activates memory content and
behavior strategies and is used in determiningexeduting a plan to achieve it.

To adapt the cognitive resources to the situatiohaad, the system’s activity is
influenced by a set ahodulators Within the Psi theory, a configuration of moduolat
settings (together with appraisals of certainty, mpetence and current
pleasure/displeasure status) is interpreted asnati@nal state [25].



The MicroPsi Framework

MicroPsi has been developed in an Al context anéeref executable neural
representations, multi-agent capabilities and Vizaton tools. The author’s group has
used it to model perceptual learning [26], the etioh of motivational parameters in
an artificial life setting and as an architectuse dontrolling robots.

The framework consists of the following componerdsgraphical editor for
designing executable spreading activation netwdwksich make up the Psi agent's
control structures and representations), a networkilator (integrated with the editor
and monitoring tools to log experiments), an ediémd simulator for the agent's
environment and a 3D viewer which interfaces wlith simulation of the agent world.

& afea-

Figure 3: MicroPsi network editor and agent environment

MicroPsi has matured into a runtime environment/mious cognitive modeling tasks.
Among other things, we are using it for

- Building agents according to the Psi theory. These agents are autonomous
systems with a set of innate urges, situated imallated environment, where they
perceive objects using a simplifiedypercept approach. Perceptual content is
represented as partonomic schema descriptionsraaiigad into protocols, which are
later retrieved to generate plans to satisfy thentig urges.

- Performing neural learning using hybrid representations. To connect higher,
gradually more abstract layers within MicroPsi netikvrepresentations to real-world
sensory input, we are setting up a matrix of fowsaisor nodes, which correspond to
pixels in the camera of a robot. By moving the fviéeld through the camera image,
the image is scanned for salient features. Usingkdrapagation learning, we are
training it to identify edge segments in the camerage, which in turn make up the
lowest layer in an instantiation bfpercept

- Evolving motivational parameter settings in an artificial life environment.
Here, groups of MicroPsi agents jointly exploreitherritory and cooperate to find and
defend resources. Suitable cooperative behaviergeslved based on mutations over
parameters for each urge and modulator in accoed@nthe given environment.

- Implementing a robotic control architecture using MicroPsi. A simplified
neurobiological model of behavior and perceptiormiée in a labyrinth is mimicked
using Khepera robots that are embodied MicroPsitage



Since its beginnings in 2001, the MicroPsi frameéwand the associated cognitive
architecture have come a long way. Even thoughd#isr is far from its goal — being a
broad and functional model of human cognition anmdoton — it fosters our
understanding and serves as a valuable tool forezgarch.
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