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Abstract. Understanding why the original project of Artificial Intelligence is 
widely regarded as a failure and has been abandoned even by most of 
contemporary AI research itself may prove crucial to achieving synthetic 
intelligence. Here, we take a brief look at some principles that we might consider 
to be lessons from the past five decades of AI. The author’s own AI architecture – 
MicroPsi – attempts to contribute to that discussion. 
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Introduction 

When the Artificial Intelligence (AI) movement set off fifty years ago, it bristled with 
ideas and optimism, which have arguably both waned since. While AI as a method of 
engineering has continuously and successfully served as the pioneer battalion of 
computer science, AI’s tenet as a method of understanding and superseding human 
intelligence and mind is widely considered a failure, and it is easy to imagine that a 
visit to one of today’s AI conferences must be a sobering experience to the enthusiasts 
of the 1950es. The field has regressed into a multitude of relatively well insulated 
domains like logics, neural learning, case based reasoning, artificial life, robotics, agent 
technologies, semantic web, etc., each with their own goals and methodologies. The 
decline of the idea of studying intelligence per se, as opposed to designing systems that 
perform tasks that would require some measure of intelligence in humans, has 
progressed to such a degree that we must now rename the original AI idea into 
Artificial General Intelligence. And during that same period of fifty years, support for 
that very idea declined outside computer science as well: where the cybernetics 
movement influenced the social sciences, the philosophy of mind and psychology, the 
world around us is now a place much more hostile to AI than in the past. The 
philosophy of mind seems to be possessed and enamored by “explanatory gaps” and 
haunted by the ghosts of the mystical “first person perspective” [1] and “irreducible 
phenomenal experience” [2], and occasionally even radical substance dualism [3, 4]. 
Attempts in psychology at overarching theories of the mind have been all but shattered 
by the influence of behaviorism, and where cognitive psychology as sprung up in its 
tracks, it rarely acknowledges that there is something as “intelligence per se”, as 
opposed to the individual performance of a group of subjects in an isolated set of 
experiments. 
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AI’s gradual demotion from a science of the mind to the nerdy playpen of 
information processing engineering was accompanied not by utterances of 
disappointment, but by a chorus of glee, uniting those wary of human technological 
hubris with the same factions of society that used to oppose evolutionary theory or 
materialistic monism for reasons deeply ingrained into western cultural heritage.  

Despite the strong cultural opposition that it always met, the advent of AI was no 
accident. Long ago, physics and other natural sciences had subscribed to the 
description of their domains (i.e. the regularities in the patterns as which the universe 
presents itself to us) using formal languages. In the words of information science, this 
means that theories in the natural sciences had become computational.2 By the 1950es, 
information processing hardware, theory and culture had progressed so far that the 
nascence of a natural science of mind as a computational phenomenon was inevitable. 
And despite the cultural struggles and various technological dead-ends that AI has run 
into, despite its failure as a science and its disfiguring metamorphosis into an 
engineering discipline, the author believes that it already has managed to uncover most 
of the building blocks of its eventual success. I will try to hint at some of these lessons. 

The second and final section of this paper will focus on an architecture 
implementing motivation in an AI system. MicroPsi is a cognitive model that 
represents the author’s attempt to contribute to the discussion of Artificial General 
Intelligence (AGI), and here, I will give a very brief overview. 

Principles of synthetic intelligence 

Understanding the apparent failure of AI as a science involves naming some of the 
traps it fell into, and participating in the endeavor of AGI will require highlighting 
some of AI’s original creeds. Naturally, my contribution to this ongoing discussion is 
going to be incomplete, slightly controversial and certainly error-prone. 

1. Build whole functionalist architectures. 

There are two aspects to that slogan: First, we are in need of functionalist architectures. 
That is, we need to make explicit what entities we are going to research, what 
constitutes these entities conceptually, and how we may capture these concepts. For 
instance, if we are going to research emotion, simply introducing a variable named 
“anger” or “pity” will not do. Rather, we will need to explain what exactly constitutes 
anger and pity within the system of a cognitive agent. We will – among other things – 
need to acknowledge that anger and pity have objects that require the perception and 
representation of (social) situations, and equip our model with these. We will have to 
capture that anger or pity have very different ways of affecting and modulating 
perception, learning, action selection and planning, memory and so on – and we have to 
depict these differences. To explicate concepts underlying intelligence and mind is to 
get away from essentialist intuitions (for instance the idea that emotion, personhood, 
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normative behavior, consciousness and so on just are, and are done by some module or 
correspond to some parameter), and to replace them by a functional structure that 
produces the set of phenomena that we associate with the respective concepts. 

Second, we need complete and integrated systems. Isolated properties will not do, 
for perception is intrinsically related to deliberation, deliberation to emotion, emotion 
to motivation, motivation to learning and so on. The attempt to reduce the study of 
intelligence to a single aspect, such as reasoning or representation is like reducing the 
study of a car-engine to combustion, temperature fluctuations or rotational movement. 

2. Avoid methodologism 

When we grow up to be AI researchers, we are equipped with the beautiful tools our 
computer science departments have to offer, such as graph theory, binary, modal and 
fuzzy logic, description languages, statistical methods, learning paradigms, 
computational linguistics, and so on. As we discover the power of these tools, they tend 
to turn into the proverbial hammers that make everything look like a nail. Most AI 
researchers that abandoned the study of intelligence did not do so because they ran into 
difficulties along that course, but because they turned to some different (worthy) 
subject, like the study of graph-coloring, the improvement of databases, the design of 
programming languages, the optimization of internet agents, the definition of 
ontologies. However, there is currently no reason to think that understanding 
intelligence will be a by-product of proving the properties of our favorite description 
language, or the application of our favorite planner to a new domain of the funding 
agencies choosing. We will need to ask questions and find methods to answer them, 
instead of the other way around. 

3. Aim for the big picture, not the individual experiment 

Our understanding of intelligence will have to be based on the integration of research 
of the cognitive sciences, possibly in a similar vein as the medieval and renaissance 
map-makers had to draw on the data made available by travelers, tradesmen, 
geographers, geometers and explorers of their times. Just as these map-makers pieced 
together a map of the world from many sources of data, we will have to draw a map of 
cognition and the mind by integrating the knowledge of many disciplines. Our current 
world maps are not the result of choosing a small corner of a small village and 
improving the available measurements there, because these measurements are not 
going to add up into a unified picture of geography. (Before that happens, the 
landscape is likely going to change so much as to make our measurements meaningless 
for the big picture.) Our first proper maps were not patchworks of infinitesimally small 
measurements, but the product of gradual improvements of a big picture. 

Disciplines that are concerned with individual measurements often sport 
methodologies that are incompatible with sketching big pictures. Note that Albert 
Einstein did not do a single experiment whilst designing the theory of relativity – 
instead, he noted and expressed the constraints presented by the data that was already 
available. Likewise, the study of AGI aims at a unified theory, and such a theory is 
going to be the product of integration rather than specialization. 

This point is likely a controversial one to make, since it seems to insinuate that the 
exploration of specific topics in AI is futile or irrelevant, which of course it not the case 
– it is just unlikely to result in an understanding of general intelligence. 



4.  Build grounded systems, but do not get entangled in the Symbol Grounding Problem 

Early AI systems tended to constrain themselves to micro-domains that could be 
sufficiently described using simple ontologies and binary predicate logics [5], or 
restricted themselves to hand-coded ontologies altogether. It turned out that these 
approaches did not scale to capturing richer and more heterogeneous domains, such as 
playing a game of soccer, navigating a crowded room, translating a novel and so on. 
This failure has opened many eyes to the symbol grounding problem [6], i.e. how to 
make symbols used by an AI system refer to the “proper meaning”. Because of the 
infinitude and heterogeneity of content that an intelligent system must be capable of 
handling to satisfy a multitude of conflicting and evolving demands (after all, 
intelligence is the answer to that problem), AI systems will have to be equipped with 
methods of autonomously making sense of their world, of finding and exploiting 
structure in their environment. Currently, it seems clear that binary predicate logic 
reasoners are not well equipped for that task, and mental content will have to be 
expressed using hierarchical spreading activation networks of some kind. AI systems 
will probably have to be perceptual symbol systems, as opposed to amodal symbol 
systems (see Fig. 1) [7], that is, the components of their representations will have to be 
spelled out in a language that captures the richness, fluidity, heterogeneity and 
affordance orientation of perceptual and imaginary content. 

 

 
 

 

Figure 1: Modal representations, as opposed to amodal representations [7] 
 

There is a different, stronger reading of the symbol grounding problem that has begun 
to haunt AI ever since Brooks’ early approach of building simple physically embodied 
machinery [7], and which is well exemplified in John Searle’s famous “Chinese room” 



metaphor [8]. This reading expresses the intuition that “mere” symbol manipulation or 
information processing would never be able to capture the “true meaning” of things “in 
the real world”. The symbol grounding problem has lead to the apostasy of those 
factions within the “Nouvelle AI” movement that came to believe that “a software 
agent can never be intelligent” [10, 11], as if only the divine touch of the “real reality” 
could ever infect a system with the mystical spark of knowing “true meaning”. As a 
consequence, the protagonists of “Nouvelle AI” have abandoned the study of language, 
planning, mental representation in favor of pure, “embodied systems”, such as passive 
walkers and insectoid robots.  

5. Do not wait for the rapture of robotic embodiment 

Even to the hardened eye of this author, it is fascinating to see a little robot stretching 
its legs. Eventually, though, the level of intelligence of a critter is not measured by the 
number of its extremities, but by its capabilities for representing, anticipating and 
acting on its environment, in other words, not by its brawns but by its brains. Insects 
may continue to rule the planet long after humankind has vanished, but that does not 
make them smarter than us. There may be practical questions to build robots instead of 
virtual agents, but the robotics debate in AI is usually not about practicality: 

Unfortunately, a lot of research into AI robots is fueled by the strong sense of 
“meaning” originating in a Searle style conception of the Symbol Grounding problem. 
This sense of meaning, however, can itself not be grounded! For any intelligent system, 
whether a virtual software agent or a physically embodied robot (including us humans), 
the environment presents itself as a set of dynamic patterns at the systemic interface 
(for instance, the sensory3 nerves). For all practical purposes, the universe is a pattern 
generator, and the mind “makes sense” of these patterns by encoding them according to 
the regularities it can find. Thus, the representation of a concept in an intelligent system 
is not a pointer to a “thing in reality”, but a set of hierarchical constraints over (for 
instance perceptual) data. The encoding of patterns that is represented in an intelligent 
system can not be described as “capturing true meaning” without the recourse of 
epistemologically abject realist notions; the quality of a world model eventually does 
not amount to how “truly” if depicts “reality”, but how adequately it encodes the 
(sensory) patterns.4  

Even though the advocates of Strong Symbol Grounding are mistaken, and there is 
no epistemological reason why the set of patterns we associate with our concept of a 
physical universe (i.e. “real things”) and that we feed into our AI model should not 
originate in an artificial pattern generator (such as a virtual world), there are practical 
difficulties with purely virtual agents: Virtual environments tend to lack richness of 
presentation, and richness of internal structure. 

Where experimenters specify virtual environments, they usually encode structures 
and details with certain pre-specified tasks and ontologies in mind, thereby restricting 
the AI agent situated in such an environment to the re-discovery of these tasks and 
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limited ontologies and depriving it of opportunities for discovery and invention. Hand-
crafted virtual environments (such as virtual soccer [12] or role-playing game worlds) 
are probably much too simplistic to act as a benchmark problem for AGI. Limited real-
world problems, such as robotic soccer or the navigation of a car through a desert, 
suffer from the same shortcoming. If we take our agents from the confines of a virtual 
micro-world into the confines of a physical micro-world, the presented environment 
still falls short on establishing a benchmark that requires AGI.  

On the other hand, there are virtual environments in existence that sport both 
structural and presentational richness to a degree comparable to the physical and social 
world, first among them the World Wide Web. Even the ocean of digitized literature 
might be sufficient: Humankind’s electronic libraries are spanning orders of magnitude 
more bits of information than what an individual human being is confronted with 
during their lifetime, and the semantics of the world conceptualized in novels and 
textbooks inherits its complexity from the physical and social environment of their 
authors. If it is possible for an intelligence system to extract and encode this complexity, 
it should be able to establish similar constraints, similar conceptual ontologies, as it 
would have while residing in a socially and physically embedded robotic body.  

Robots are therefore not going to be the singular route to achieving AGI, and 
successfully building robots that are performing well in a physical environment does 
not necessarily engender the solution of the problems of AGI. Whether robotics or 
virtual agents will be first to succeed in the quest of achieving AGI remains an open 
question. 

6. Build autonomous systems 

As important as it is to integrate perception, memory, reasoning and all the other 
faculties that an intelligent system employs to reach its goals is integration of goal-
setting itself. General intelligence is not only the ability to reach a given goal (and 
usually,  there is some very specialized, but non-intelligent way to reach a singular 
fixed goal, such as winning a game of chess), but includes the setting of novel goals, 
and most important of all, about exploration. Human intelligence is the answer to living 
in a world that has to be negotiated to serve a multitude of conflicting demands. This 
makes it a good reason to believe that an environment with fixed tasks, scaled by an 
agent with pre-defined goals is not going to make a good benchmark problem for AGI.  

The motivation to perform any action, such as eating, avoiding pain, exploring, 
planning, communicating, striving for power, does not arise from intelligence itself, but 
from a motivational system underlying all directed behavior. In specifying a 
motivational system, for instance as a set of conflicting drives, we have to make sure 
that every purposeful action of the system corresponds to one of its demands; there is 
no reason that could let us take behavioral tendencies such as self-preservation, energy 
conservation, altruistic behavior for granted – they will have somehow to be designed 
into the system (whereby ‘somehow’ includes evolutionary methods, of course). 



7. The emergence of intelligence is not going to happen all by itself 

While the proposal of AGI or synthetic intelligence is based on a computational 
monism,5 dualist intuitions are still widespread in western culture and in the 
contemporary philosophy of mind, and they are not going to give in without a fight. 
Because a naked ontological dualism between mind and body/world is notoriously hard 
to defend, it is sometimes covered up by wedging the popular notion of emergence into 
the “explanatory gap” [13]. Despite the steady progress of neuroscience and 
computational models of neural activity, there is an emergentist proposal that assumes 
so-called “strong emergence”, which proposes that the intelligent mind, possibly 
including human specifics such as social personhood, motivation, self-
conceptualization and phenomenal experience, are the result of non-decomposable 
intrinsic properties of interacting biological neurons, or of some equally non-
decomposable resonance process between brains and the physical world. Thus, “strong 
emergence” is basically an anti-AI proposal. 

Conversely, “weak emergence” is what characterizes the relationship between a 
state of a computer program and the electrical patterns in the circuits of the same 
computer, i.e. just the relationship between two modes of description. In that sense, 
emergent processes are not going to “make intelligence appear” in an information 
processing system of sufficient complexity. We will still need to somehow (on some 
level of description) implement the functionality that amounts to AGI into our models. 
 
This brief summary of principles of synthetic intelligence does not answer the main 
question, of course: How do we capture the functionality of Artificial General 
Intelligence? – In cognitive science, we currently have two major families of 
architectures, which seem to be hard to reconcile. One, the classical school, could be 
characterized as Fodorian Architectures, as they perceive thinking as the manipulation 
of a language of thought [14], usually expressed as a set of rules and capable of 
recursion. Examples, such as ACT [15] and Soar [16] are built incrementally by adding 
more and more functionality, in order to eventually achieve the powers inherent to 
general intelligence. The other family favors distributed approaches [17, 18] and 
constrains a dynamic system with potentially astronomically many degrees of freedom 
until the behaviors tantamount to general intelligence are left. This may seem more 
“natural” and well-tuned to the “brain-level” of description, because brains are 
essentially huge dynamical systems with a number of local and global constraints 
imposed on them, and the evolution of brains from mice-sized early mammalians to 
homo sapiens has apparently not been a series of incremental functional extensions, but 
primarily a matter of scaling and local tuning. Yet many functional aspects of 
intelligence, such as planning and language, are currently much harder to depict using  
the dynamical systems approach.  

The recent decade has seen the advent of several new architectures in AI, which try 
to combine both approaches in a neuro-symbolic fashion, such as Clarion [19], LIDA 
[20], the MirrorBot [21] and the author’s own MicroPsi [22], which will briefly be 
introduced on the remaining pages. 
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The Psi theory and the MicroPsi architecture 

MicroPsi [22, 23] is an implementation of Dietrich Dörner’s Psi theory of mental 
representation, information processing, perception, action control and emotion [24] as 
an AI architecture. MicroPsi is an attempt to embody the principles discussed above:  

1. MicroPsi aims at explaining intelligence by a minimal orthogonal set of 
mechanisms that together facilitate perception, representation, memory, attention, 
motivation, emotion, decision-making, planning, reflection, language. These features 
are not explained as parameters or modular components, but in terms of the function of 
the whole system; for instance, emotions are explained as specific configurations of 
cognitive processing rather than as given parameters; behavior is not the result of pre-
defined goal directed routines, but of a demand-driven motivational system and so on. 

2. An integrated cognitive architecture will require the recourse to methods from 
many disciplines; MicroPsi originates in theories of problem solving in psychology 
and integrates ideas from gestalt theory, motivational psychology and experiments in 
the study of emotion. Also, it has learned a lot from cognitive modeling paradigms and 
from representational strategies and learning methods in AI. 

3. The facets of cognition are not seen as separate modules that could be 
understood, tested and implemented one by one – rather, they are aspects of a broad 
architecture. The model combines a neuro-symbolic theory of representation with a 
top-down/bottom-up theory of perception, a hierarchical spreading activation 
theory of memory with a modulation model of emotion, a demand/drive based 
theory of dynamic physiological, cognitive and social motivation with a model of the 
execution and regulation of behaviors.  

4. Representations in MicroPsi are always grounded in environmental 
interaction or abstractions thereof. It does not matter, however, if the environment is 
simulated or physical. 

5. The difficulty of providing a rich pre-programmed environment vs. the 
limitations that come with robot engineering have lead to both simulation worlds and 
robotic experiments for MicroPsi agents. At the current stage of development, we 
seem to learn much more from simulations, though. 

6. MicroPsi agents are autonomous, their behavior is governed by a set of 
primary urges which determine motives which in turn give rise to intentions. All 
behavior, including cognitive exploration and social interaction, can be traced back to 
one or more primary urges. 

7. There are many aspects of intelligence that MicroPsi does not address well yet. 
However, we do not believe that these will be automagically spring into existence with 
gradual improvements of the learning, representation or interaction modes of the model. 
We think that the deficits of MicroPsi highlight specific mechanisms, for instance for 
perceptual integration, language and self-monitoring, that we have not sufficiently 
understood to implement them. MicroPsi might propose some interesting answers, but 
more importantly, it helps to detail a lot of useful questions. 

Representation in the Psi theory 

The most basic elements in Dörner’s representations are threshold elements, which are 
arranged into groups, called quads. These are made up of a central neuron, surrounded 
by four auxiliary neurons acting as gates for the spreading of activation through the 



network. A network of quads amouts to a semantic network with four link types, called 
SUB, SUR, POR and RET. SUB: stands for “has-part”. If an element a has a SUB-link to an 
element b, it means that a has the part (or sometimes the property) b. SUR is the inverse 
relation to SUB and means “is-part”. If a is SUR-linked to b, then a is a part (or 
sometimes a property) of b. POR (from latin porro) is used as a causal (subjunctive), 
temporal or structural ordering relation between adjacent elements. If a has a POR-link 
to b, then a precedes (and sometimes leads to or even causes) b. RET (from latin retro) 
is the inverse relation to POR. If there is a RET-link between a and b, then a succeeds 
(and sometimes is caused by b. 

Quads make up perceptual schemas and frames: Individual quads stand for 
concepts. If they are SUB/SUR linked, a partonomic (has-part/is-part) relationship is 
expressed. The lowest level of such a partonomic tree is made up by perceptual 
neurons and motor neurons. They provide the grounding of the system’s 
representations, since they are directly linked to the system’s environment. 

In MicroPsi, quads are extended to cover more basic relations and are expressed by 
concept nodes. In addition to the basic POR/RET and SUB/SUR links, they also offer link 
types for taxonomic and labeling relationships. 

Object schemas are organized as parts of situational frames. The world model of 
the system is established, reinforced or changed by hypothesis based perception 
(“hypercept”). Hypercept is a paradigm that might be described as follows: 

- Situations and objects are always represented as hierarchical schemas that bottom 
out in references to sensory input. 

- Low-level stimuli trigger (bottom-up) those schema hypotheses they have part in. 
- The hypotheses thus activated heed their already confirmed elements and attempt 

(top-down) to get their additional elements verified which leads to the confirmation of 
further SUB-hypotheses, or to the rejection of the current hypothesis. 

- The result of hypercept is the strongest activated (matching) hypothesis. 
At any time, the system pre-activates and inhibits a number of hierarchical schema 

hypotheses, based on context, previous learning, current low-level input and additional 
cognitive (for instance motivational) processes. This pre-activation speeds up the 
recognition by limiting the search space. 

Hypercept is not only used on visual images, but also on inner imagery, memory 
content, auditory data and symbolic language.  

The current situational frame is stored as the head element of a growing protocol 
chain, which is formed by decay and re-arrangement into long-term memory. 

Behavior Execution 

A neuron that is not part of the currently regarded cortex field is called a register. 
Neural programs are chains of registers that call associators, dissociators, activators and 
inhibitors. (These “calls” are just activations of the respective elements.) In the course 
of neural execution, elements in the cortex field are summarily linked to specific 
registers which are part of the executed chain of neurons. Then, operations are 
performed on them, before they are unlinked again.  

Dörner describes a variety of cognitive behaviors for orientation, anticipation, 
planning, memory retrieval and so on, often along with possible implementations. [24, 
25]  



Motivation and Emotion 

During action execution, the system establishes motives based on a set of primary 
urges which are hard-wired. Currently, these urges consist of demands for fuel, water, 
intactness, affiliation, competence and certainty.  
 

 
Figure 2: Psi architecture  

 
Fuel, water and intactness are examples of physiological needs. Affiliation is a social 
urge – to satisfy it, the system needs affiliation signals from other agents. Thus, Psi  
agents may reward each other. Competence measures the ability to reach a given goal 
and the ability to satisfy demands in general (coping potential). The urge for certainty 
is satisfied by successful exploration of the environment and the consequences of 
possible actions, and it is increased by violations of expectations. Competence and 
certainty are cognitive urges. Together they govern explorative strategies. 

Every increase of an urge creates a negative reinforcement signal, called 
displeasure signal; conversely, a decrease of an urge results in a pleasure signal. These 
signals are used to strengthen links in the current protocol and thus enable 
reinforcement learning of behavior. At any time, the system evaluates the urge 
strengths and, based on an estimate of the competence for reducing individual urges, 
determines a currently active motive. This motive pre-activates memory content and 
behavior strategies and is used in determining and executing a plan to achieve it.  

To adapt the cognitive resources to the situation at hand, the system’s activity is 
influenced by a set of modulators. Within the Psi theory, a configuration of modulator 
settings (together with appraisals of certainty, competence and current 
pleasure/displeasure status) is interpreted as an emotional state [25]. 



The MicroPsi Framework 

MicroPsi has been developed in an AI context and offers executable neural 
representations, multi-agent capabilities and visualization tools. The author’s group has 
used it to model perceptual learning [26], the evolution of motivational parameters in 
an artificial life setting and as an architecture for controlling robots.  

The framework consists of the following components: a graphical editor for 
designing executable spreading activation networks (which make up the Psi agent’s 
control structures and representations), a network simulator (integrated with the editor 
and monitoring tools to log experiments), an editor and simulator for the agent’s 
environment and a 3D viewer which interfaces with the simulation of the agent world.  

 
Figure 3: MicroPsi network editor and agent environment 

 
MicroPsi has matured into a runtime environment for various cognitive modeling tasks. 
Among other things, we are using it for 

- Building agents according to the Psi theory. These agents are autonomous 
systems with a set of innate urges, situated in a simulated environment, where they 
perceive objects using a simplified hypercept approach. Perceptual content is 
represented as partonomic schema descriptions and arranged into protocols, which are 
later retrieved to generate plans to satisfy the agent’s urges. 

- Performing neural learning using hybrid representations. To connect higher, 
gradually more abstract layers within MicroPsi network representations to real-world 
sensory input, we are setting up a matrix of foveal sensor nodes, which correspond to 
pixels in the camera of a robot. By moving the foveal field through the camera image, 
the image is scanned for salient features. Using backpropagation learning, we are 
training it to identify edge segments in the camera image, which in turn make up the 
lowest layer in an instantiation of hypercept. 

- Evolving motivational parameter settings in an artificial life environment. 
Here, groups of MicroPsi agents jointly explore their territory and cooperate to find and 
defend resources. Suitable cooperative behaviors are evolved based on mutations over 
parameters for each urge and modulator in accordance to the given environment.  

- Implementing a robotic control architecture using MicroPsi. A simplified 
neurobiological model of behavior and perception of mice in a labyrinth is mimicked 
using Khepera robots that are embodied MicroPsi agents. 



Since its beginnings in 2001, the MicroPsi framework and the associated cognitive 
architecture have come a long way. Even though MicroPsi is far from its goal – being a 
broad and functional model of human cognition and emotion – it fosters our 
understanding and serves as a valuable tool for our research. 
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