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Abstract 

Computational models of cognitive functioning have become a thriving paradigm in 
Cognitive Science, yet they usually only emphasize problem solving and reasoning, 
or treat perception and motivation as isolated modules. A very promising approach 
towards a broader architecture of cognition is the Psi theory of Dietrich Dörner. By 
dealing with the integration of motivation and emotion with perceptual and reasoning 
processes and including grounded neuro-symbolic representations, it contributes to an 
integrated understanding of the mind.  

The Psi theory supplies a conceptual framework highlighting the interrelations 
between perception and memory, language and mental representation, reasoning and 
motivation, emotion and cognition, autonomy and social behavior. However, its 
origin in psychology, its methodology and the lack of documentation have limited its 
impact to cognitive modeling. 

 
This work adapts the Psi theory to Cognitive Science and Artificial Intelligence, by 
summarizing and structuring it, by identifying its contribution to understanding 
cognition, and by providing a technical framework for implementing models of the 
theory.  

These goals are reflected in the three parts of this thesis. “Dörner’s Blueprint for a 
Mind” is a synopsis of the work of Dörner and his group. It reviews the available 
publications and implementations from the perspective of Cognitive Science and 
represents the statements and assumptions of the theory.  

“The Psi Theory as a Model of Cognition” briefly charts the domain of cognitive 
modeling and establishes the Psi theory’s position within this field, its contributions, 
limitations and some of its shortcomings. A special section focuses on computational 
models of emotion.  

One of the most interesting aspects of the theory is the suggestion of hierarchical 
neuro-symbolic representations which are grounded in a dynamic environment. These 
representations employ spreading activation mechanisms to act as associative 
memory, and they propose the combination of neural learning with symbolic 
reasoning and planning. “MicroPsi” is a comprehensive software framework designed 
to implement and execute models of the Psi theory as multi-agent systems. The final 
chapter introduces this framework and illustrates its application. 
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Introduction: Building blocks for a Mind  
 

“What I cannot create, I do not understand” 

Richard P. Feynman, 1988 
 

Let me invite you to a journey into what might be seen as a piece of really old 
fashioned Artificial Intelligence research, a work completely dedicated to 
understanding the functional workings of intelligence and the mechanisms that 
underlie human behavior. The exploration of individual aspects of intelligence: 
perception, representation, memory and learning, planning, reasoning, behavior 
control and so on have lead to tremendous insights and fruitful applications. Take 
logic as an example: once seen as a fundamental ingredient of human intelligence, the 
design, examination and application of reasoning systems has become a very active 
area in Artificial Intelligence. However, it became clear that symbolic reasoning falls 
short not only in modeling low level behaviors but is also difficult to ground into real 
world interactions and to scale upon dynamic environments (see, for instance, 
Dreyfus 1992). This has lead many researchers to abandon symbolic systems 
altogether and instead focus on parallel distributed, entirely sub-symbolic approaches, 
which are well suited for many learning and control tasks, but are difficult to apply 
for areas such as reasoning and language.  

Of course, most research domains of AI have resulted in extremely valuable and 
even useful results. They paved the way for many disciplines of computer science, as 
diverse as computer vision, knowledge management, data mining, data compression 
and the design of autonomous robots.  

Each of these fields opens up its own host of avenues to follow, and many of them 
are not going to meet at an integrated understanding of what makes up a mind. 
Building different tools that model tasks requiring intelligence when performed by 
humans does not cumulate in an overall model of human intelligence! Thus, there 
have been calls from different disciplines—AI, psychology, cognitive neuroscience 
and philosophy—to concentrate on integrative architectures that are laid out 
specifically for the purpose of modeling and understanding the human mind.  

Such a broad architecture will necessarily be shallow at first (cite broad and 
shallow architectures), replacing crucial components with scaffolding and complex 
behaviors with simple ones. It will have to rely on ideas, paradigms, results and 
opinions stemming from many disciplines, each sporting their own, often 
incompatible methodology and terminology. And consequently: it will be full of 
mistakes and incorrect assumptions, misrepresentations of results, misnomers, 
distortions resulting from skewed perspectives, and over-simplifications. Yet, there is 
reason to believe that despite inevitable difficulties and methodological problems, the 
design of unified architectures modeling the breadth of mental capabilities in a single 
system is a crucial stage in understanding the human mind, one that has to be faced 
by researchers working where the different sciences concerned with human abilities 
and information processing interface. We will have to put up with the burden of 
interdisciplinarity, because the areas of human intelligence are inseparably 
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intertwined. Language can not be fully understood without understanding mental 
representation, representation can not be understood without perception, perception 
not without interaction, interaction not without action control, action control and 
affordances not without motivation, and motivation not without the contexts set by 
evolution, environment, physiology and sociality, and so on. An understanding of the 
mind that does not regard the psychological, the social, the physiological interface to 
the world, language, reasoning, emotion and memory, and their common ground 
(which I believe to be information processing) will not only be incomplete in isolated 
parts, but is not going to be an understanding at all. 

 
In a way, the designer of a unified architecture is in a similar situation as the 
cartographers that set out to draw the first maps of the world, based on the reports of 
traders and explorers returning from expeditions into uncharted waters and journeys 
to unknown coasts. These travelers were of very diverse ilk, and their reports were 
often contradicting, incomplete and inaccurate. Coasts of suspected continents turned 
out to be islands, small islets turned out to be outcrops of vast lands. What appeared 
to be a sea sometimes was just a lake, different places appeared to be identical, and 
passages thought to be leading to known lands lead into territory that was previously 
unheard of. All the while, the cartographers were sitting at their drawing tables (or 
were traveling on some boat themselves), and drew their maps based on their own 
mistaken preconceptions, which constrained continents into circular shapes with 
biblical settlements in their center. 

All the while, there were geometers and prospectors at work that did proper maps 
with tools fit for the task. They charted houses, villages, roads and counties, over and 
over, and with often astounding accuracy. And while their work was irreplaceable for 
their respective and local purposes, the world maps of later generations were not 
derived by putting their results together into a mosaic of billions of diagrams of 
houses, farms, crossroads and villages, but by critically improving on the initial tales 
and faulty sketches that attempted to represent the world as a whole. 
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Figure 1: Pietro Vesconte: Mappa Mundi (1321, from Marino Sanudo’s Liber 
secretorum fidelium crusis)1 

The design of a cognitive architecture might be undertaken as a purely philosophical 
endeavor, or with a common platform for psychological theory in mind. But taking 
this job to the AI laboratory adds something invaluable: it requires the theory not 
merely to be plausible, but furthermore requires it to be fit for implementation, and 
delivers it to the instant and merciless battle of testing. To implement a theory, it 
needs to be formal even in its scaffoldings, completely specified in the crucial parts 
and crevices and outspoken about the messy details. Because of the educating 
experiences they tend to have had while testing their premature conceptions of even 
relatively simple, straightforward problems such as sorting of numbers or unification 
of variables, computer scientists tend to be sober and careful when compared to many 
a philosopher, humble, pedantic and pessimistic when compared to some 
psychologists. They also tend to know that there are many examples for models of 
mental processes that are technically simplistic, but not easy to invent because of 
their unintuitive nature, such as self-organizing maps and backpropagation learning.  
On the other hand, they know of problems that are apparently much easier to 
understand than to fully conceptualize and implement, such as frames (Minsky 1975). 

 

                                                 
1 Pietro Vesconte is considered as the first professional cartographer to sign and date his works 
regularly. He was one of the few people in Europe before 1400 to see the potential of 
cartography and to apply its techniques with imagination. As can be seen in the world map he 
drew around 1320, he introduced a heretofore unseen accuracy in the outline of the lands 
surrounding the Mediterranean and Black Sea, probably because they were taken from the 
portolan (nautical) charts. Vesconte’s world maps were circular in format and oriented with 
East to the top (see Bagrow 1985). 
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Building an AI model of the mind amounts to what the philosopher Searle (himself 
not sympathetic of the idea) has termed “strong AI”, in contrast to “weak AI” (Searle 
1980). “Strong AI” means treating AI as a science and as a philosophy, not as a field 
of engineering. In this way, AI offers some unique methodological advantages.  

 
When looking at a system, we might take different stances, as the philosopher Daniel 
Dennett suggested (Dennett 1971): the physical stance, which attempts a description 
at the level of the relevant physical entities (the physical make-up and the governing 
laws), the design stance (how the system is constructed) and the intentional stance (a 
description of the system in terms of beliefs, desires, intentions, attitudes and so on).2 
Computer Science allows taking an active design stance: the one of a constructing 
engineer (Sloman 2000). Understanding a system in Computer Science means to be 
able to express it fully in a formal language, and expressing it in a formal language 
amounts (within certain constraints) to obtaining a functional model of the thing in 
question. If the system to be modelled is a physical system, such as a thunderstorm, 
then the result will be a simulation of its functioning. But if we are looking at an 
information processing system that in itself is supervening over its substrate, then we 
are replacing the substrate with the implementation layer of our model and may 
obtain a functional equivalent. 

This is what gives AI much of its fascination and makes it appear dubious in the 
eyes of many a skeptic beholder. 

The peculiarity lent by the constructionist stance to AI sadly did not attract many 
philosophers into the labs of the computer science department (although it attracted 
some, see for instance Boden 1977; Pollock 1995; Haugeland 1985, 1992; Sloman 
1978, and it seems AI yet has some distance to cover before it may announce a 
complete success in its quest. Yet, every failure also helps to shed some light, 
because an approach not working is a hypothesis falsified, and an approach that is 
only applicable to a limited domain might be the much-wanted solution to a domain-
specific problem. 

The history of AI has seen too many attempts to built systems acting as models of 
cognition as to mention them all. Expert Systems have demonstrated that it is difficult 
to manage real-world complexity with static rule-based models, even if the domain is 
limited. Newell and Simon’s General Problem Solver (1961) did turn out to solve 
some specific real-world problems not very well. Huge bodies of predicate-logic 
based knowledge combined with reasoning mechanisms, such as Cyc (Lenat 1990) 
have not learned to autonomously acquire new knowledge and handle real-world 
tasks. Purely connectionist architectures have yet to show that they are capable of 
learning to plan and use language (although they have been taking steps). Thus, 

                                                 
2 It might be difficult to draw a dividing line between the physical stance and the design stance: 
the levers and wheels making up a watch are physical entities as well as parts out of an 
engineer’s toolbox. On the other hand, the lowest levels of description used in physics are in a 
state of flux. They are made up by a bunch of competing theories that are pitched against each 
other with respect to the question how well they construct observable behaviour. In fact, both 
the physical stance and the design stance are functionalist stances, each with regard to a 
different level of functionality.  
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strong AI’s results (apart from a huge number of immensely useful bits that are 
scattered all over Computer Science now) mainly consist out of questions, methods, 
mechanisms, architectural sketches and heavily inscribed signposts saying: “beware” 
or “promising things waiting ahead”. 

 
Given the methodological benefits lent to AI by Computer Science, it is not 
surprising that some of the more adventurous psychologists were attracted to it and 
started adding to it by calling for Unified Architectures of Cognition (Newell 1973). 
The most well-known are probably EPAM (Gobet, Richman, Staszewski and Simon 
1997), Newell, Laird and Rosenbloom’s Soar (1987), and Anderson and Lebière’s 
ACT (Anderson 1983, 1990). To sum up the specifics of these architectures with 
maximum brevity (we will revisit them later on): EPAM is a model concentrating on 
concept formation based on high-level perception, Soar models rule-based problem 
solving, and ACT focuses on problem solving with respect to memory organization. 
EPAM, Soar and ACT are not autonomous systems: in their raw form, they are just 
cognitive high-level modules lacking motivation. 

It has often been argued that cognition can not be seen in isolation from 
motivation and/or emotion, because these shape concept formation and direct the 
course of cognitive action control. The work displayed in this thesis has largely been 
inspired by a frame set by the theoretical psychologist Dietrich Dörner—the Psi 
theory3—partly because it addresses its subject in such a way as to allow an 
implementation as a computational model, while providing enough overlap to 
existing theories in cognitive science to make it compatible or comparable to other 
approaches. On the other hand, the scope of the theory renders it somewhat unique. 
Dörner addresses not just isolated aspects of the human mind, but explains the 
interchange of perception, action, mental representation and emotion, as he deems 
them largely inseparable. Unlike the other unified theories of cognition, Dörner treats 
the cognitive system not as a module that is set up for certain kinds of calculations, 
but always an agent. Of course, the Psi system also does nothing but certain kinds of 
calculations—but the focus in not on the abstract heights of some disembodied notion 
of cognition. Psi systems are motivated all the time, they perceive, learn and cogitate 
always with respect to some goal that stems from demands, an action control layer 
and a certain access to the environment. The agent perspective—that of a system that 

                                                 
3 Since the Psi theory attempts to be a grounding perspective for psychology, perhaps it is not 
surprising that Dörner has chosen the favorite Greek letter of psychology as its namesake. It 
might seem somewhat unfortunate that this collides not only with terms to denote pressure in 
physics and extraordinary abilities in parapsychology, but also with another psychological 
theory “of everything” by Julius Kuhl (2001). Like Dörner, Kuhl attempts to integrate the 
many perspectives of psychology by embedding them into a foundational theory. Both Psi 
theories are largely concerned with motivation and action control and are probably even 
slightly influencing each other. However, where Kuhl takes a “top-down” route starting from 
the psychology of personality, Dörner firmly grounds his model on computational accounts and 
attempts to ascend from there. It might be fair to say that there is a lot of ground not yet being 
covered between the two Psi theories. 
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is autonomous, pro-active, persistent, situated and adaptive—is shared by most 
contemporary approaches in AI. 

Dörner’s theory of the mind as laid down in his book “Bauplan für eine Seele” 
(“Blueprint for a Soul”) amounts to a head-on approach, starting out with an attempt 
to justify his reductionist treatment of psychology, an explanation of autonomy in 
terms of dynamical systems theory and then delving into the mechanisms of 
perception, mental representation, memory, action control and language, all the time 
maintaining a design stance and often supplying suggestions for algorithmic 
solutions. Dörner not only claims that a computational foundation of psychological 
principles is possible, but that it is necessary— not as a replacement of psychological 
assessments, but as a much needed explanation and integration. 

Dörner and his group have implemented a graphical neural simulator (DAS, 
Hämmer and Künzel 2003) aiding in demonstrating some aspects of Dörner’s neural 
models of cognition and a prototypical Psi agent nicknamed “James” that resembles a 
little steam locomotive and navigates an island world in pursuit of survival and 
exploration. James has been written in Delphi-Pascal and does not make use of the 
neural principles of the theory. However, it nicely illustrates Dörner’s model of 
emotion and contains solutions for perception, learning and planning within the 
conceptual framework of the Psi theory. 

 
The Psi theory has been laid down in the course of many lectures at the University of 
Bamberg, the comprehensive book “Bauplan für eine Seele” (Dörner 1999) that 
provides introduction and explanation to many aspects of the theory, the follow-up 
“Die Mechanik des Seelenwagens” (Dörner et al. 2002) and various publications that 
describe earlier stages of the theory (Dörner 1974, 1976, 1977, 1988, 1994, 1996; 
Dörner and Wearing 1995; Dörner and Hille 1995, Dörner, Hamm and Hille 1996; 
Bartl and Dörner 1998b, 1998c; Hille and Bartl 1997; Hille 1997, 1998), individual 
parts and components (Dörner et al. 1988; Dörner 1994, 1996b; Künzel 2003; 
Strohschneider 1990; Gerdes and Strohschneider 1991; Schaub 1993), experiments 
(Strohschneider 1992; Bartl and Dörner 1998, Detje 1999; Dörner et al. 2003; Dörner 
et al. 2005) and related work within Dörner’s group (Dörner and Gerdes 2005, 
Hämmer and Künzel 2003). Last but not least, the code of the Psi agent 
implementation is publicly available too (Dörner and Gerdes 2004). There is 
currently no comprehensive publication in the English language that covers the Psi 
theory, nor has it to my knowledge been seriously introduced into the discussion of 
Artificial Intelligence and Cognitive Science beyond some brief mentions in review 
papers (Ritter et al. 2002; Morrison 2003). This may also be due to the fact that even 
though concepts and ideas of the Psi theory are compatible with a lot of work in AI, 
the psychological terminology, the lack of formalization and the style of presentation 
differ considerably.  

 
Dörner’s theory has much in common with a number of cognitive architectures that 
have been developed at computer science departments, such as the Neural Theory of 
Language of Jerome Feldman’s group at Berkeley (Feldman 2006), Stan Franklin’s 
attempts at ‘Conscious Agents’ (2000), Aaron Sloman’s inspiring but not very 
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detailed Cognition and Affect architecture (which in turn owes much to Antonio 
Damasio) (2001), and its reasoning components and methods of internal 
representation could be compared (even though the result will find many differences) 
to the psychological cognitive architectures.  

 
Once we arrive at a model, testing becomes essential—and it has been performed 
extensively on existing cognitive architectures like ACT and Soar. While testing 
partial models of human cognition is no easy task, summaries of testing processes 
(Ritter and Larkin, 1994) and of some possible tests (Ritter 1993) are given in the 
literature, and Ritter and Bibby (2001) provide particularly useful example sets of 
comparisons. Yet you will notice that there is no chapter on testing the Psi theory in 
this work! This is due to the current state of the theory; as Frank Ritter complained: 
“The PSI architecture is currently incomplete, which raises interesting questions 
about how to judge a nascent architecture. PSI does not have a large enough user 
community and has not been developed long enough to have a body of regularities to 
be compared with let alone adjusted to fit. How can PSI be compared with the older 
architectures with existing tutorials, user manuals, libraries of models, and example 
applications?” (Ritter et al., p. 37) 

Indeed, any attempt of evaluating and testing the Psi theory raises grave 
methodological issues. First of all, the Psi theory does not attempt to look at the 
different aspects of cognition, like memory, behavior regulation, motivation, emotion, 
perception, in isolation, but combines them all in a common framework instead. This 
in itself is of course no obstacle to testing, because even if different faculties are 
deemed inseparable to achieve a certain cognitive capability, this capability might 
still be evaluated independently. But a standpoint that attempts to integrate all aspects 
of a cognitive system, however briefly and fleetingly, will inevitably create a set of 
assertions so extensive and far-reaching that it will be an immense task just to 
formulate them. The derivation of a model of such a theory that is fit for 
implementation seems even more difficult. And should we succeed in our attempts to 
implement such a model—partial and abridged in many ways, and hampered by the 
tools and methods at hand—what can we compare it to? The Psi theory is for instance 
not concerned with low-level neurophysiology and those properties of cognition that 
stem directly from the specifics of the connectivity of the individual cortical areas, or 
the speed of propagation of activation in biological neurons. While it attempts to 
maintain compatibility with general neurobiological assumptions, the Psi theory must 
abstain from making quantitative predictions on neuroscientific experiments. 
Furthermore, the Psi theory claims to be a theory of human cognition, but while it 
admits that most feats of problem-solving that are unique to humans depend on the 
mastery of verbalization, it is still far from supplying a working model of the 
acquisition and use of grammatical language. Problem solving in the Psi theory is 
therefore limited to tasks below the level of humans for the time being. Does this 
make it a theory of animal cognition? If so: of which animal? This question might not 
find an answer either, because even though the Psi theory is aware of the relevance of 
perception of a rich real-world environment for the formation of grounded mental 
representations, it can not provide ready solutions for the difficult challenges real-



 
 

 
 
 

viii Introduction 

world perception puts to an organism. And if we forego the issue of an accurate 
model of perceptual processes, we will be running into problems caused by the limits 
of the implemented set of learning, categorizing and planning mechanisms, which all 
fall short of the state of the art in the relevant disciplines of Computer Science. 
Almost paradoxically, while claiming to be in integrative theory of the different 
aspects of mental functionality, Psi fails to be very good at modeling these aspects in 
isolation. 

The stakes of the Psi theory lie elsewhere: its propositions are of a qualitative 
nature. Rather than predicting how long it takes and how likely it is to retrieve an item 
from working memory, it addresses what an item in working memory is: how it is 
related to inner imagery and to language, the way it is represented and how it is 
grounded in interactional contexts. Instead of timing the exact influence of a negative 
emotional setting on problem solving and task switching, it makes statements about 
the structure of a negative emotion and the way problem solving and task switching 
are linked to emotion. Before it compares the affinity of individuals to different sets 
of stimuli, it deals with the motivational system to explain things like affinity and 
aversion. The Psi theory is no model of human performance—it is a blueprint for a 
mind. Or, if you permit the use of my original metaphor: it is an attempt to draw a 
map of the world in the confines of a science that is dominated by geometers that 
grew accustomed to charting individual villages and valleys, and an attempt that is 
necessarily hampered by the need to neglect detail for the sake of perspective, and to 
accept crudeness for the sake of manageability. 

Naturally, it is also possible to put structural assumptions to the test. But this 
requires the development of alternative explanations to pitch them against, and over-
arching theories competing with the Psi theory seem to be in short supply. So far, 
Dörner seems to have resorted to two ways to cope with that problem: 

1. Instead of strictly testing the theory by its model implementation, he uses the 
model as a demonstration. He has realized Psi agents that he has put into a problem 
solving situation similar to that used in evaluating human performance: a virtual 
world that has to be navigated in search of resources. I do not believe that this 
demonstration, while successful, qualifies as a test, because the same task could 
probably solved at least equally well by a different, much more simple agent that is 
specifically tailored for the task. Such a “dumb”, specialized agent might fail in a 
different environment—but unfortunately, that applies to Dörner’s model as well, 
because his current realization of the Psi agent is too restricted to use it in different 
domains without significant changes. 

2. Individual aspects of the implementation have directly been compared to 
humans that were asked to perform in the same problem solving scenario, especially 
the emotional modulation during the course of the test, and the results and strategies 
while tackling the task (Detje 1999; Dörner et al. 2002, pp. 241; Dörner et al. 2003). 
But since it is not an isolated component that enters the comparison, it is not always 
clear to the critical reader whether an individual positive or negative result in the test 
can be attributed to the accuracy of the theory (or its lack thereof), or if is due to the 
specifics of the experimental setting and the nature of simplification that has been 
applied to individual areas of the implementation. 
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The fact that Dörner’s methodology deviates from experimental psychology does not 
automatically give it a domicile under the roof of another science. It is, for instance, 
neither a typical work in AI, and by attempting to house it under AI’s roof, I am 
bound to inherit some of the original methodological trouble. While there is a history 
of publications that focus on conceptualization of architectures for modeling the 
human mind (Minsky 1986, 2006; Franklin 2000; Sloman 2001; Brooks 1986; 
Winograd and Flores 1986), most work in Artificial Intelligence is leaning heavily on 
the engineering side, and I would be much more comfortable if it would offer more in 
the way of testable details, like a distinctive parallel distributed classification 
algorithm that I could judge against against existing methods and end up comparing 
the numbers. 

Even in the light of the difficulties posed not only by a nascent model but perhaps 
also by a nascent methodology, Dörner’s question remains urgent and exciting: how 
does the mind work? It is a question that should not certainly fall victim to 
“methodologism”, the fallacy of ignorance towards those aspects of a realm that 
happen to lie outside the methodology already at hand (Feyerabend 1975). It is not 
the methodology that should dictate the question; instead, it is the formulation of the 
question which has to forge the tools for answering it. Treading new territory, 
however, does not relieve us from the burden of scientific accuracy and the  
justification of both results and the methods we employ to obtain them, and we have 
to remain especially wary and vigilant towards the question whether we are still 
pursuing a productive paradigm, one that yields insight, results and applications, or if 
we have fallen victim to a regressive program and spend our days with patchwork and 
rationalizations of the failure of theoretical assumptions to stand up to scrutiny 
(Lakatos 1977, and Feyerabend 1975). 

After many discussions with researchers in Artificial Intelligence and Cognitive 
Science and much encouragement I have received, I think that there is every reason to 
believe that the Psi theory has an enormous potential at becoming a productive 
paradigm. Domains like artificial life, robotic soccer (Kitano, Asada, Kuniyoshi, 
Noda et al. 1997), the control of autonomous robots in a dynamic environment, social 
simulation (Castelfranchi 1998), the simulation of joint acquisition of language 
categories (Steels 1999) or simply the application for providing students of Computer 
Science with a hands-on experience on Multi Agent systems development suggest 
many immediate uses for agents based on the Psi architecture. At the same time, 
developing and experimenting with Psi agents is an opportunity to sharpen notions 
and improve our understanding on the fundamental entities and structures that make 
up a cognitive system, based on motivation and routed in its interaction with an 
environment. The first step will necessarily consist in an analysis and discussion of 
the Psi theory itself. (This is of foremost importance, because the currently available 
presentations of the theory leave much to be desired, and thus, it will be what makes 
up the first two sections of this work.) Next, we will have to see how we can put the 
principles of the Psi theory to work, that is, how we can create a framework to 
implement the theoretical entities proposed, and to design agents that make use of 
them. (That’s the remainder of this thesis.) 



 
 

 
 
 

x Introduction 

Over the course of the last years, the author and his students have constructed a 
framework for the design of a specific kind of Psi agents: MicroPsi (Bach 2006). This 
framework allows for creating, running and testing MicroPsi agents in a virtual 
world, or through a robotic interface (Bach 2003b). In accordance with the Psi theory, 
it is possible to define these agents using executable spreading activation networks 
(Bach and Vuine 2003), and to lend them a hybrid architecture that unifies symbolic 
and sub-symbolic aspects within a single mode of description. We have also defined 
and implemented an agent based on a partial version of the Psi theory—the MicroPsi 
agent (2003). These agents make use of the proposed hybrid network architecture, 
and while mainly based on Dörner’s theory, we never hesitated to introduce changes 
and borrow from other approaches when deemed appropriate. Current work is 
concerned with extensions of the agent for learning and classification, and its 
application to robotic environments. 

 
On the following pages, you will find three sections: 

1. Dörner’s “Blueprint for a Mind” is a summary of the book containing the 
main elements of Dörner’s theory and approach. I will resort to Dörner’s 
other publications wherever necessary to supply additional details, and the 
reader will find most concrete elements of the theory, as far as they are 
published. 

2. The Psi Theory as a Model of Cognition is a short comparison with other 
approaches in the fields of cognitive modeling and artificial emotion, along 
with a critical discussion of the theory. 

3. The MicroPsi Architecture is a description of our (the author’s and his 
students’) framework for the design of a cognitive architecture embodying 
the Psi theory. 

 
Have a nice journey! 
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1 Dörner’s “blueprint for a mind” 
This section will address Dörner’s theory on mental representation, information 
processing, perception, action control and emotion in detail. The book “Bauplan für 
eine Seele” (99)4 covers its outline and will act as a main source. Where needed, I 
will resort to other publications of Dörner and his group to fill in necessary details 
and extensions, especially the more technical “Mechanik des Seelenwagens” (02) 
that is concerned with aspects of an implementation of the theory. 

 
While rooted in the field of psychology, there is actually very little psychological 
methodology to be found in Dörner’s book “Bauplan für eine Seele”. Rather, it might 
be seen as an attempt to bridge the gap between the burning questions of the 
Philosophy of Mind and the computational approaches provided by Computer 
Science. Thus, it is a book genuinely belonging to the interdisciplinary field of 
Cognitive Science. 

Dörner does not give much room to the terminological and cultural specifics of 
the discussions in philosophy and computer science, and he also usually foregoes 
some subtlety regarding the established notions of psychology for the sake of 
interdisciplinarity, even though he sets out to provide—first of all—a reductionist 
foundation of psychology5. The inevitable price of these tactics is the need to 
introduce, sometimes in a simplified manner, most of the basic concepts Dörner’s 
theory relies on, and consequently, a considerable portion of the text consists of 
colloquial explanations of the necessary ideas supplied by the different disciplines. 
For example, from Artificial Intelligence, he borrows elements of dynamical systems 
theory, neural networks, simple semantic nets, scripts, frames and some tools for the 
description of algorithms. Philosophy seemingly supplies functionalist und some 
structuralist foundations, along with fruitful metaphors and a host of questions Dörner 
strives to answer. Genuinely psychological input stems from contemporary theories 
of perception, emotion theories and a theory of action control that has partly been 
developed by Dörner himself (see Dörner 1974; Dörner and Wearing 1995), and 

                                                 
4 Because Dörner’s 1999 and 2002 publications (“Bauplan für eine Seele”, and “Die Mechanik 
des Seelenwagens”, respectively) are mentioned very frequently throughout this section, I will 
abbreviate the references as (99) and (02) from now on. 
5 See p. 809, where Dörner notes in the afterword: “Aristotle laconically expressed: ‘The soul 
is the principle of the living’, and this I understood as ‘the soul is the set of rules that determine 
the functioning of an organism, if it is alive’.—If that is true, then one has to simply put down 
these rules to exercise psychology. And this is what I have tried in this book.” Also, in the 
introduction (99: 16), Dörner expresses why he perceives a need to ground psychology in a 
nomothetic description: “But if we refuse to consider our mental life [Seelenleben] as an 
agglomerate of if-then-statements, we will get into a difficult position regarding psychology. 
We had to accept then that psychology could at best partly be exercised as a science. [...]  We 
could not explain these [psychological] processes, would thus be unable to construct theories 
for them. The human soul would be inaccessible to science, and psychology would not be 
scientific [Seelenwissenschaft] but merely historical [Seelenkunde—‘psychography’], a 
description of things that happened here and there, at this and that time.” 



 
 

 
 
 

2 Dörner’s “blueprint of a mind” 

incorporates ideas of Norbert Bischof (1968, 1975, 1989, 1996), Friedhart Klix 
(1984, 1992), Ulrich Neisser (1967, 1976), Jens Rasmussen (1983) and many others. 
Dörner’s theory also owes much to his extensive research background in modeling 
and evaluating human problem solving. “Bauplan für eine Seele” puts these different 
accounts into a single frame of reference, thereby necessarily aggravating some 
psychologists and philosophers, and even a few computer scientists, but providing 
profound joy to interdisciplinary minded cognitive scientists (Ritter et al. 2002) and 
students of Artificial Intelligence and Cognitive Science in Germany. At the time of 
writing, no English translation of Dörner’s books on the Psi theory is available; the 
following shall act as a summary, tailored for interest and background of those 
working in the field of Artificial Intelligence and related disciplines. While I strive to 
remain faithful to the original sources, I am bound to introduce misrepresentation and 
inaccuracies that are not warranted by the original text. Because I will leave out many 
details and make no attempt to replicate the breadth of Dörner’s examples, his 
didactic endeavors or his argumentative excurses into the areas of cognitive science, 
philosophy, literature and plain common sense, this chapter can not replace a proper 
translation. Still, my main goals for this section are to piece the theory together from 
the available sources, to produce something like a short guide to it, and to make it 
generally more accessible, mainly by removing redundancies. 

1.1 Introductory remarks 

“Bauplan für eine Seele” translates to “blueprint for a soul”, whereas the entity the 
book strives to explain is the mind (“Geist” ), rather than its more spiritual 
terminological companion.6 Dörner does not just address cognition, but focuses on 
the emotional system into which higher cognitive abilities are embedded and displays 
what is commonly described as symbolic and sub-symbolic reasoning as a 
continuum. By choosing “soul” instead of “mind”, Dörner apparently puts emphasis 
on this perspective, which somewhat differs from the logically reasoning agents of 
traditional Artificial Intelligence. (Interestingly, by explaining emotion as an aspect 
of the configuration of a cognitive system, as we will see, Dörner also takes a 
radically different position than most work of Artificial Emotion research, which 
often treats emotion as a mere “add-on” to the cognitive core.) To avoid confusion, I 
will use the word ‘mind’ from now on indiscriminately to refer to both ‘Geist’ and 
‘Seele’ when I translate from Dörner’s book.7 

Nevertheless, the Psi theory is an attempt at representing the mind as a specific 
kind of machine, much in the same way as physics represents the universe as a kind 
                                                 
6In accordance with Norbert Bischof (1996a), Dörner explains religion as the result of 
culturally perpetuated attempts at hypothesizing about the reasons and hidden aspects of 
intensely meaningful, large-scale events—such as weather, natural disaster, death—based on 
analogies (99: 746 -747). 
7Dörner’s choice of the word ‘soul’ instead of ‘mind’ might also be due to a historical legacy, 
i.e. the terminology of Aristotle. (Compare p. 33, where Dörner cites Aristotle with “The soul 
is reason and principle of the living body.” On p. 280, “Geist”—mind—is used as a translation 
for ‘intellect’, i.e. the exclusively rational aspect of the mind.) (See also Hille 1997.) 
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of machine. Here, a machine amounts to a (possibly very large, but not infinite) set of 
if-then statements. Such a description is Dörner’s requirement to psychology, as long 
as it wants to be treated as a (natural) science (99: 16), and of course it does not need 
to prevent anyone from recognizing the mind as adaptive and creative, or to neglect 
the reality of phenomenal experience. 

The rule-based view of the mind taken by the Psi theory does not imply that the 
mind can be best understood as a single-tiered determinism made up of yes-no-
decisions, but rather as an intricately linked, fuzzy and self-extending causal network 
structure8 (99: 18). In subscribing to a rule based, i.e. computational approach, the Psi 
theory is not exactly alone. The computational theory of the mind is widely agreed on 
within cognitive science,9 and Dörner definitively subscribes to it, when he says: “I 
want to show that mind is entirely possible as computational activity.” (99: 22)  

 
Psi is not only the name of the theoretical framework describing human psychology, 
but also frequently used to denote the agent that acts as a model of the theory. This 
ambiguity also applies to the style the theory is formulated: Dörner does not put much 
effort into maintaining a clear distinction between the ideas of the theory and possible 
instantiations of this theory in an agent implementation. This is different to the way 
some other theories of cognition are laid down; for instance within the ACT theory 
(Anderson 1983, 1990), John Anderson attempts to distinguish between main 
assumptions and theses (the framework), ways of implementing these (the model) and 
the actual experiments (i.e. particular implementations). These partitions are not to be 
found in Dörner’s books, neither have I tried to create such a division here, because 
its absence does not provide an obstacle to our purpose—to piece together Dörner’s 
theory, while aiming for an implementation. Still, it might be helpful to bear in mind 
that the core of the theory consists probably in the functional entities and the way and 
magnitude they are interrelated to create a dynamic cognitive system. Whenever it 
comes down to particular methods of calculating these interrelations and weighting 
the influences, we are likely to look at an (often preliminary and sometimes 
incomplete) model. For example: throughout Dörner’s books, a number of relatively 
detailed circuits (built from threshold elements) are used to illustrate ways to 
implement certain bits of functionality. While these illustrations nicely show that 
neural elements are suited to perform the necessary computations, Dörner does not 
claim that they picture how this functionality is actually implemented in the human 
cognitive system, but demonstrates that it is possible to construct the necessary 
computational arrangements using artificial neurons. Since I am confident that this 
point is not controversial here, I will not hesitate to replace them by simpler 
explanations of the required functionality whenever possible. 

                                                 
8Technically, of course, it might be possible to implement an intricately linked, fuzzy and self-
extending causal network structure using a single-tiered determinism made up of yes-no-
decisions, such as a von-Neumann computer. Computational equivalence does not mean 
paradigmatic indifference. 
9This does not mean that there is no dissent on how far Cognitive Science can successfully go 
in the application of the computational theory of the mind. 



 
 

 
 
 

4 Dörner’s “blueprint of a mind” 

While Dörner has specified his theory in much more detail than for instance Aaron 
Sloman did for the Cognition and Affect Architecture (Sloman 2001), it is not very 
much formalized. Maybe this is a good thing, not only because the colloquial style of 
the description makes it much easier to understand for the casual reader, but also 
because it lends flexibility to the interpretation, where a more rigid fixation of 
Dörner’s concepts would be unnecessarily narrow and premature. I have tried to keep 
the presentation this way as well, by providing explanations that are detailed enough 
for setting out to sketch an implementation, yet avoiding to restrict the descriptions 
by narrow formalizations not warranted by the current state of the theory. 

In the presentation of particular algorithms I have taken some liberty in the 
translation of the original diagrams into pseudo-code. In some places, I have 
corrected apparent slight mistakes; in others I have made minor changes to match the 
algorithms more closely to their textual descriptions in the book, or to clarify the 
sequence of operations. My main goals were to ease understanding and the removal 
of redundancy while preserving the underlying idea.  

 

1.2 An Overview of the Psi Theory and Psi Agents 
“The Psis do not play theatre, they do not act ‘as if’, like 
Weizenbaum’s Eliza.” (99: 805) 

 
Several prototypical implementations of Psi theory aspects have been made available 
by Dörner, first as partial models of representation and emotion, and later agent 
based approaches. These agents are systems acting on their own behalf and are 
situated in a virtual environment, which provides sensations and means for 
interaction.  

Psi agents are usually little virtual steam vehicles, which depend on fuel and water 
for their survival. When they are instantiated into their environment, they have no 
knowledge of how to attain these needs—they do not even know about the needs. All 
they have is the simulacrum of a body that is endowed with external sensors for 
environmental features and internal sensors for its physiological and cognitive 
demands. Whenever the internal sensors signal a growing deficit, for instance an 
imminent lack of fuel to heat the boiler, which is necessary to keep the turbines of the 
agent running, a change in the cognitive system takes place (called a displeasure 
signal). The agent is not necessarily experiencing this displeasure signal—however, 
the signal is creating a negative reinforcement, which has an effect on learning, it 
may change the relationship of the agent to the environment by modulating its 
perception, and it raises the activation of a motivational mechanism—it creates an 
urge—to reduce the demand. Through random exploration and goal-directed action, 
the agent learns how to satisfy the particular demands, i.e. which operations to 
perform on the environment to attain a reduction of the demand and thus the opposite 
of a displeasure signal—a positive reinforcement on its learning, which also increases 
its estimate of competence to handle similar situations in the future. (Actually, there 
is a specific demand for competence as well.) Note, how the Psi theory distinguishes 
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between demands (actual needs of the system), urges (which signal a demand) and 
motives (which direct the system to take care of some need). 

 
Let us join a Psi agent on one of its adventures, right after it has been created into its 
little world. Impressions of environmental features are pouring in, and an initial 
conceptualization of the starting place is built. The place may be described as a 
meadow; it is characterized by grassy ground, the absence of trees, the neighborhood 
of a little stream to the south, of impassable rocks to the east and north and to a forest 
towards the west. While the Psi agent is busy exploring things in its environment, it 
consumes the better part of its fuel, and the respective demand is signaled as an urge 
signal. This is not the only urge signal active at the time (the agent might need water 
and some repairs too), and it is thrown into a competition of motives. After a short 
evaluation to determine the feasibility of finding a source of energy the urge wins 
against the competition, and the agent establishes the search for fuel as its currently 
active goal. More accurately put: the goal is the attainment of an event that consists in 
reducing the fuel demand. By activating the representation of this goal, and letting the 
activation spread to associated preceding situations, possible remedies for the fuel 
demand can be identified in the memory of the agent. In the Psi agent’s world, these 
might be the consumption of nuts or grains, which are used to extract oil to fire the 
boiler. A simple way of finding a plan that gets the agent into the presence of such 
treats can be found by means of an associative memory: Starting from the goal, 
events are retrieved along the remembered sequences of actions and events—those 
which in the past have lead to the goal situation. If no such sequence (leading from 
the current situation to the goal situation) is found, then the agent has to construct it, 
for instance by laying out a route based on topographical knowledge that has been 
acquired in other contexts. In our case, the agent remembers a place that is only a 
short distance in the west: a clearing with hazel, where nuts were found in the past. A 
chain of locomotive actions to get to that place is easily found, and the agent starts to 
move. During the execution of the simple plan to move westwards and picking a few 
nuts, the agent compares its environment and the outcome of individual actions with 
its expectation.  

After moving into the forest, everything turns out as expected. The trees at the 
forest’s edge all stand where they were remembered, no obstacles hinder progress, 
and the clearing with the hazel tree can be seen not far away. A few moments later, 
the agent arrives at its destination. But what an unpleasant surprise! Another agent 
has visited the place since its last visit! Not only did it ravish the hazel and did not 
leave anything edible behind, it also mutilated the flowers of the clearing and 
changed the way the place looks. The latter is sufficient to fail the agent’s 
expectations and increases its demand for the reduction of uncertainty. The former 
leads to a complete failure of the plan, because no fuel has been found in the expected 
location.  

Because the demand for fuel is still active, a new plan could be formed, but since 
the agent has a new demand (the one for the reduction of uncertainty), and has had a 
recent frustrating experience in attempting to replenish its fuel tank, a new motive 
takes over, and the agent starts exploring the clearing. After a while it has indeed 
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determined in which way the destroyed flowers look different, and how the clearing 
has changed. After updating its representation of the clearing and having learnt 
something about the appearance of mutilated flowers, it eventually gets back to the 
original motive. Again, a new plan is formed: there is a field with sunflowers, which 
can be reached by following the path further to the west, until a distinctive oak tree is 
reached, and then cutting through the shrubs in northbound direction. 

Meanwhile, the journey to the clearing and the exploration did cost more fuel, and 
the need to replenish the dwindling resources has become quite pressing, which 
causes the agent to become somewhat agitated: it increases its activation. Such an 
increase leads to a greater determination in pursuing the goal and reduces the time 
that is dedicated to planning and pondering in favor of action, and should amplify the 
chances to get to the sunflowers before the agent breaks down. Unfortunately, the 
price for diverting the cognitive resources to action consists in a lower resolution of 
planning and perception, and while the agent hastily travels to the west, it ignores 
most details of its environment. Even though it progresses faster, it misses the 
landmark—the oak that marked the way to the sunflowers. When finally a digression 
between the expectations and the environment is recognized, the agent has traveled 
too far of its mark. Running out of fuel, it breaks down, until the experimenter comes 
to its rescue. 

 
What I have just described is a setting very much alike to those that can be observed 
in a run of Dörner’s computer simulation experiments. What’s interesting: if human 
subjects are put into the same environment—giving them access to the same world as 
the agent via a screen and a keyboard or joystick—human performance is very 
similar to that of the model (02: 249-323, Dörner 2003).10  

 

                                                 
10 Initially, humans show a similar learning curve (although they are faster, if they have 
intuitions about the possible uses of things that are known from previous knowledge about 
things like streams and nuts whereas the agent initially has to guess). After a while, they tend 
to develop a strategy to cope with the problems posed to them, and this strategy development 
can be emulated by the agent. There seems to be a limit, however, to what the current model is 
capable of: Dörner’s agents will formulate their plans according to past successes and failures 
and arrange their execution according to the urgency of individual demands and their estimated 
competence at reaching a goal. Whenever humans go beyond that (and in experiments Dörner’s 
group noted that most of the time, they don’t), and start to analyze their strategies, actively 
compare them, and even evaluate their meta strategies (those that lead to finding a strategy in 
the first place), they will be able to outperform the agent model (Detje 1999). 
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Figure 1.1: Psi Island 

What are Psi agents?—As we have seen, they are vehicles navigating their 
environment in pursuit of resources and knowledge. Psi agents are not Tamagotchis  
(see Kusahara 2003) or Eliza style facades (Weizenbaum 1966), they do not act “as 
if”. (99: 805) Of course, they are computational, but they do not know about this, i.e. 
if something is computed in them (like their hunger urge) they have no way of 
knowing it: 

“It [the Psi agent] would not know about the computations that lead to Psi’s 
perception of hunger. The respective processes would remain hidden to it. Psi would 
just have a motive ‘hunger’, and this would press into the foreground, would get to 
direct actions, or fail to do so. Perhaps, in connection to that motive, a specific 
configuration or sequence of configurations of the modulator settings ‘activation’, 
‘resolution level’, ‘concentration’ could arise as the result of a calculation that 
incurs to the states of the factors influencing the modulators. But the machine would 
not know that. It would denote certain successions of patterns its protocol memory as 
‘anger’, ‘angst’, ‘rage’; but how those patterns […] come about, would remain 
concealed to it.” (99: 806) 

 
Dörner’s Psi agents (and the same holds true for our adaptations—the MicroPsi 
agents) are tremendously simplified projections of the underlying (and sometimes 
intangible) theoretical ideas. Currently they do not know grammatical language 
(which is a tenet of the theory), they have a limited perceptual access to their world 
(which is a virtual one), and they lack most self-reflective abilities. And yet, Dörner 
claims that they are already autonomous, know real meaning, possess real motives, 
and undergo real emotions. Furthermore: it might be possible to extend them along 
the suggested lines into a full-blown constructionist model of human emotion, 
cognition, behavior, personality. 
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To some readers, these claims may appear very bold. But even if one does not 
subscribe to such an optimistic assessment of Dörner’s ideas, his concepts may 
provide an extremely fruitful and inspiring frame for further discussion. 

 
The Psi theory relies on neural computation. One of its goals consists in showing that 
all cognitive processes can be realized as neural processes.11 On the other hand, it is 
not a neurophysiological theory, or a theory of the brain. In fact, Dörner argues that 
the actual brain structures might not be crucially important for understanding 
cognition—because they belong to a different functional level than the cognitive 
processes themselves. Dörner cites Norbert Bischof’s argument (Bischof 1996): 

“In my view, to wait for the advances of neurophysiology or neuroanatomy is 
even dangerous. It means to bind yourself to the more basal science and to progress 
in your own only so much as the advances of the brain sciences allow. It means to 
shackle yourself. What would have become of chemistry, if it had always waited for 
the more basal science of physics? Indeed, I am of the opinion that the 
neuroanatomist or neurophysiologist does not necessarily have to supply something 
of substance if we are to speak about the mind. The metallurgist, knowing everything 
about metal molecules and their alloys, is not necessarily the best authority with 
regard to the functioning of car engines, even though these consist mainly of steel 
and iron. It is perfectly possible to exercise a functional and accurate psychology 
without knowing much about neurophysiology. 

(...) Nevertheless, contact to the brain sciences is useful and advantageous. And 
for this reason I will—whenever possible—reflect upon processes in the brain, by 
attempting to describe many mental processes as neural processes.” (99: 22-23) 
 
The following chapter deals with the details of this functional theory of mental 
processing and is structured as follows: First, we will have an introductory look at 
Dörner’s view on autonomy as the product of a cascaded feedback system controlling 
an agent and his illustrative metaphor of a little steam vehicle (section 1.3). The Psi 
theory starts from such a simple autonomous system and equips it with memory, 
action control, motivation, emotion, planning and perception until we arrive at a 
complex cognitive agent architecture that attempts to model aspects of human 
psychology. The low level building blocks of such a system are the subject of section 
1.4: they are a simple set of neural elements that express sensory input and actuator 
output, abstracted concepts, relationships, schemas and scripts. The elements make up 
the memory of the agent: section 1.5 discusses how working memory, world 
representation, protocol memory, learning and abstraction are represented in the 
theory. The following part (1.6) focuses on perception: after explaining anticipation 
and orientation in a dynamic environment, we deal with hypothesis based perception, 
which might be one of the core components of Dörner’s theory. Hypothesis based 
perception enables a bottom-up/top-down process, where objects are identified based 
on hierarchical representations that have been gradually acquired in previous 

                                                 
11 To the computer scientist, this will not come as a big surprise, since the neural processes in 
question are obviously Turing computational. 
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experiences. We are looking at the acquisition of new perceptual object descriptions 
and their representation in a situation image and their enactment using mental 
simulation. Section 1.7 deals with strategies for knowledge management and explains 
the idea of symbol grounding as found in Dörner’s theory. The control of behavior 
and the selection of action based on motivation are the object of section 1.8. Here, we 
also define cognitive modulators and their role within the architecture, which leads us 
into the field of emotion (section 1.9). Discussing higher level cognition without 
examining language might not prove very fruitful, because most planning, knowledge 
management and retrieval strategies of human cognition rely on it, but a shallow 
approach on language is threatened by superficiality. Nevertheless, even though the 
Psi theory does not yet tackle language in sufficient detail, a short section (1.11) 
points out how language is currently integrated, and which future avenues are opened 
by the theory. Finally, we shall have a brief look at Dörner’s implementations (1.12) 
of the emotion model (EmoRegul) and the Psi agent. Even though these models are 
relatively abstract and simplified and as such fall short of the goal of giving a 
complete and detailed representation of any area of human cognition, many of the 
most enlightening ideas of the theory have been derived from them. Improvements in 
the theory and in the understanding of human cognitive faculties will be achieved by 
further elaboration of the individual ideas, their actual implementation and their test 
in the form of executable computer models, both with respect to functionality of the 
system itself and in comparison to human cognitive performance. 

1.3 A simple autonomous vehicle 
The simplest form of a mind that is able to care for the constancy of 
inner states is a feedback loop. (99: 31) 

 
The Psi theory describes primarily the regulation of high-level action in a cognitive 
agent. The most basic example of autonomous action regulation is a feedback loop—
this is where a system starts to become somewhat independent of its environment (99: 
30), and this is where the Psi theory starts. Note that feedback-loops are deterministic 
mechanisms. There is no contradiction between deterministic mechanisms and 
adaptive, autonomous behavior: a system might add (deterministically) new 
determinisms to become more adaptive.  

Take an intelligent car, for example, that measures not only the driver’s steering 
impulses and her braking actions, but also correlates the traction of the wheels, fuel 
usage and engine torques. Such a car could create driver’s profiles, customizing the 
reaction of the gas pedal, smoothing the steering, or tailoring the reaction of the 
brakes depending on the prior behavior of the driver. Thus, additional feedback loops 
decouple the driver from the immediate reaction of the car. Via adaptation, the car 
becomes more autonomous. Of course, there is quite a distance between a feedback 
loop and a cognitive system. 

 
Dörner introduces his theory in “Bauplan für eine Seele” incrementally. He starts out 
with a very simple system: a Braitenberg vehicle (99: 43; Braitenberg 1984). In its 
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basic form, it consists of a robot with locomotive abilities (two independently driven 
wheels) and a pair of light receptive sensors. Each sensor controls a wheel: if the 
sensor gets a stronger signal, it speeds up the respective engine. If the sensors are 
crosswise connected, then the sensor closer to the light source will give its stronger 
signal to the more distant wheel, and consequently, the vehicle will turn towards the 
light source.  

 
 
 
 
 
 
 
 
 

Figure 1.2: Braitenberg Vehicle 

Conversely, if the sensors are wired in parallel, then the sensor closer to the light 
source will give its stronger signal to the closer wheel, thus turning the vehicle away. 
Of course, the sensors do not need to be light-receptive—they could react to 
humidity, to sound or to the smell of fuel. With these simple mechanisms, and using 
multiple sets of sensors, it is possible to build a system that shows simple behaviors 
such as seeking out certain targets and avoiding others.  

The next step may consist in de-coupling the feedback-loops from the sensors and 
introducing switches, which depend on internal state sensors. For instance, if the 
internal state sensors signal a lack of fuel, then the switch for the fuel-seeking 
behavior is turned on. If there is a lack of water, then the system might override the 
fuel-seeking behavior and turn on the water-seeking feedback loop. And if the system 
has gotten too wet, it might inhibit the water-seeking behavior and switch on a water-
avoiding behavior. All the time, it is crucial to maintain a homeostasis, a dynamic 
balance of some control values in the face of the disturbances created by changes in 
the environment and by the agent’s actions.  

In an organism, we may find a lot of similar comparisons between current values 
and target values. They are taking place all the time on the physiological level, for 
instance to regulate the body temperature, or the level of glucose in the blood. 
Differences between the current value from the target value are corrected using 
feedback mechanisms (Dörner 1987; Miller, Galanter and Pribram 1960). But 
modeling an organism using feedback loops does not need to stop at the physiological 
level—it applies to its psychological system as well (Bischof 1969). 

 
Dörner’s vehicle playfully starts out as a little steam engine—with a boiler that needs 
water and fuel for its operation, external sensors for water and fuel, internal sensor-
actuator controls to maintain water level and pressure level of the boiler, and a 
locomotive system driven by a pair of turbines. In each case, a sensor inhibits an 
actuator whenever the desired level is reached. 
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The activity of the internal sensors is measured over time. For example: if the 
pressure in the boiler is too low, the agent may shut down its locomotion for a while, 
so pressure can build up again. If one of the sensors signals a demand that remains 
active over a long time (for instance the pressure remains low, because the water 
reservoir is empty), then the system switches to a different behavior (for instance, 
seeking out water-sources in the environment). 

 

 
 
Figure 1.3: Feedback system control (99: 51) 

Thus, the sensor now disinhibits an actuator not only if the current value deviates 
from the target value, but it also disinhibits a secondary actuator that acts as a 
fallback-system. The failure of the first system is detected by an accumulator 
measuring the activity of the first actuator over time. (This is done by making the 
element self-activating, so its activation builds up over time, and performing a reset 
whenever the measured element becomes inactive.) The accumulator adds activation 
to the secondary actuator that eventually becomes strong enough to switch it on.  

 
The actual Psi agents do not just have a single demand, but many of them. The 
demands are usually not directly connected to a readily executable behavior, but are 
signaled as urges, give rise to motives, lead to the formation of goals and result in the 
execution of plans to fulfill these goals. Psi agents live in a world full of possible 
successes and impending dangers. A success is demand reduced, and a danger 
amounts to the possibility of an event that increases a need (99: 211). 

To integrate multiple demands, the increase or decrease of the activity of the 
individual demand sensors is translated into pleasure and distress signals (99: 47), 
which in turn are used as reinforcement signals for appetitive and aversive learning 
(99: 50, 54). While the agents may store all their perceptions and actions, only those 
events that are related to pleasure and displeasure are reinforced and kept (99: 125). 
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Figure 1.4: Simplified view of Dörner’s suggested architecture (02: 27) 

In short, Psi agents operate on an environment that is interpreted according to learned 
expectations. They choose goals depending on pre-defined physiological and 
cognitive urges and their expectations to fulfill these urges. Active motives and the 
environment set a context within the agent’s memory and help to retrieve knowledge 
for planning and perception. Actions are performed according to plans which are 
derived using previously acquired knowledge. Results of actions and events in the 
environment are represented in a situation image and make up new memories, 
whereas the strength and contextual annotation of these memories depends on their 
motivational relevance. Perception, memory retrieval and chosen behavior strategies 
are influenced by modulator parameters which make up a setting that can be 
interpreted as an emotional configuration. 

 
All these aspects of the Psi theory are going to be covered in more detail down below. 
But first, let’s look at the building blocks of a Psi agent. 

1.4 Representation of and for mental processes 

The Psi theory suggests a neural representation for its agents. The atomic components 
are threshold elements, which are used to construct hierarchical schema 
representations. The connection to the environment is provided through special neural 
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elements: sensor elements acting as input for external and internal events, actuators 
that trigger behaviors outside and inside the agent’s system. Furthermore, there is a 
number of technical elements to create new links, increase or decrease activation in a 
set of elements etc. By spreading activation along links while switching the direction 
of spreading according to sensor input and the activation of other elements, it is 
possible to execute behavior programs and control structures of the agent. 

In fact, all internal representations consist of these elements: sensory schemas for 
recognizing and recalling objects, actuator schemas for low-level plans and control 
structures all share the same set of notations. 

1.4.1 Neural representation 

1.4.1.1 Neurons 
The most basic element in Dörner’s representations is a kind of artificial neuron, a 
threshold element. (99: 63; 02: 38-43) These neurons are characterized by their  

• activity A 
• threshold value12 t 
• amplification factor13 Amp 
• maximum activation Max 

 
The output of a neuron is computed as  
 ( )min ,O Max A Amp= ⋅  (1.1) 

There are four types of neurons: activatory, inhibitory, associative and 
dissociative. While the latter two types only play a role in creating, changing and 
removing temporary links, the former are used to calculate the activation of their 
successor.  

 

 
 
Figure 1.5: Neural element 

A neuron j is a successor of a neuron i, if and only if there is a link with a weight14 wi,j  
from i to j. In each step, each neuron i propagates a value , ,i j i j iv w O= ⋅ , if i is 

                                                 
12 “Schwelle” 
13 “V-Faktor” 
14 “gi” 
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activatory, and , ,i j i j iv w O= − ⋅ , if i is inhibitory. The activation of j is then calculated 
as  

 ( ),max 0,j i ji
A v t= −∑  (1.2) 

 

 
Figure 1.6: Possible neural inputs (02: 39) 

Thus, neurons always have activations between 0 and Max, and they can either be 
excitatory or inhibitory, but not both. Usually, but not always, Max will be 1. 

 

1.4.1.2 Associators and dissociators 
Associative and dissociative neurons (99: 80-81; 02: 38-41) rely on further properties, 
which are globally defined for an agent or for a set of neurons within that agent: 

- learning constant L 
- dissociative constant D 
- decay constant K 
- decay threshold T 

When an associative neuron (or associator) transmits activation onto another 
neuron j and j is active itself, then the link weights wi,j between j and all active 
neurons i are strengthened:  

 ( )2

, , ,
new
i j i j i j associator associator jw w A A A w L= +  (1.3) 

Note that the strengthening usually starts slowly, and then gets faster, because of the 
square root term. Yet it is possible to set the weight immediately to 1, by setting the 
activity of the associator to a very high value (such as 1000). 

 
If the associator is inactive, then the links undergo a decay:   

 ( )2
, , , ,max 0, , if ,   elsenew

i j i j i j i jw w K w T w= − <  (1.4) 

Thus, only those links that are below a threshold T are weakened. (The value of K is 
typically quite small, such as 0.05.) 

 
Dissociative neurons are inverse associators. If the dissociator is active, then the link 
weights are updated as  

 ( )2
, , ,max 0,new

i j i j i j dissociator dissociator jw w A A A w D= −  (1.5) 

Dörner justifies associators with assumptions by Szenthagothai (Szenthagothai 1968) 
and Eccles (Eccles 1972) and results from the 1990s, when it could be shown that 



 
 

 
 
 

 15 

receiving neurons can (based on postsynaptic emission of nitrous oxide) trigger 
presynaptic neurons to increase their reservoir of transmitter substances (Spitzer, 
1996, Bliss and Collingridge, 1993). Thus, associators probably correspond to actual 
structures in the brain. Dissociators are completely speculative and have been 
introduced for convenience (02: 42).15 

 
With these elements, it is possible to set up chains of neurons that are executed by 
spreading activation and switched using thresholds. It is also possible to perform 
some basic set operations, like union and intersection. 

Naturally, it is also possible to create simple feed-forward networks (perceptrons) 
that perform pattern recognition on the input of the agent (99: 75). 

 

1.4.1.3 Cortex fields, activators, inhibitors and r egisters 
The next important element of Dörner’s neural networks may be called a cortex field 
(“Cortex”) (Dörner 1988/89; 02: 70). A cortex field is essentially a set of neurons that 
are subject to the summary actions of associators, dissociators, activators and 
inhibitors.  

A general activator is simply an activatory neuron connected to all elements of a 
cortex, likewise, a general inhibitor is an inhibitory neuron connected to all elements 
of a cortex. (02: 69-72) 

A neuron that is not part of the currently regarded cortex field is called a register 
(02: 71). Neural programs are chains of registers that call associators, dissociators, 
activators and inhibitors. (These “calls” are just activations of the respective 
elements.) In the course of neural execution, elements in the cortex field are 
summarily linked to specific registers which are part of the executed chain of 
neurons. Then, operations are performed on them, before they are unlinked again. 
(02: 42,70) 

1.4.1.4 Sensor neurons and motor neurons 
Sensors (02: 50) and actuators (“Aktoren”; 02: 54) are neurons that provide the 
system’s interface to the outside world. Sensors become active if triggered by the 
environment, and actuators attempt to perform a specific operation on the outside 
world, when activated. In practice, an actuator might be used as a shortcut to express 
an elaborate actor schema (such as gripping a teacup), whereas actual elementary 
actuators are tantamount to muscle innervations and would provide only very 
rudimentary operations. 

1.4.1.5 Sensors specific to cortex fields  
Branches in the programs depend on sensory input to the chains of neurons: by 
receiving additional activation from a sensor neuron, activation can overcome a 

                                                 
15 Dissociators may be useful to un-link sets of temporarily connected neural elements within 
Dörner’s framework, but they might not need to have a functional equivalent in the brain. 
Instead, it might suffice if temporary associations rapidly decay if they are not renewed. Thus, 
association would require a periodic or constant refreshing of the link-weights, and dissociation 
may be achieved by a period of de-activation of the associated elements. 
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threshold, such that neurons act very similar to transistors. The opposite can happen 
as well, a sensor neuron might inhibit a branch in the activation program. Of course, 
sensors do not have to do this directly, their signals might be pre-processed by other 
neural structures. 

While many of the sensor neurons will act as part of the interface of the agent to 
the outside world, including physiological parameters (such as the demands for fuel 
and water), some will have to provide information about internal states of the agent’s 
cognition. With respect to cortex fields, there are sensors that signal if more than one 
or more than zero elements in the cortex are active (02: 72). These sensors are used in 
several of Dörner’s suggested algorithms, for instance to aid in selecting perceptual 
hypothesis from the neural structures stored in a cortex field. Strictly speaking, they 
are not necessary. Rather, they are a convenient shortcut to linking all neurons within 
a cortex field each to an amplifier neuron (t=1, Amp=1010 or similar), which 
transforms the activation into a value of 0 or 1, and then connecting all amplifiers to a 
register with a threshold that amounts to the sum of all elements, or to the sum of all 
elements –1. 

1.4.1.6 Quads 
When working with spreading activation networks, activation should be directionally 
constrained to avoid unwanted recurrences, which might result in unforeseen 
feedback loops. Also, for many purposes it is desirable to build hierarchical networks. 
This is where quads, which are certain combinations of simple neurons, come into 
play (02: 44-50). 

 
To build hierarchical networks of neural elements, four kinds of links are being used. 
Two are erecting the ‘vertical direction’ - they are essentially partonomic relations: 

- sub: This link type stands for “has-part”. If an element a has a sub-link to an 
element b, it means that a has the part (or sometimes the property) b. 

- sur: This is the inverse relation to sub and means “is-part”. If a is sur-linked to b, 
then a is a part (or sometimes a property) of b. 
The two remaining link types are spanning the ‘horizontal direction’: 

- por (from latin porro): The por-relation is used as a causal (subjunctive), temporal 
or structural ordering relation between adjacent elements. If a has a por-link to b, 
then a precedes (and sometimes leads to or even causes) b.  

- ret (from latin retro): Again, this is the inverse relation to por. If there is a ret-link 
between a and b, then a succeeds (and sometimes is caused by b). 
Usually, if two elements are connected by a por-link or sub-link in one direction, 

there will be a link of the inverse type in the other direction too. Still, the inverse 
direction is not obsolete, because the links are meant to transmit spreading activation. 
When activation is transmitted through a link, the opposite direction should not 
automatically be active as well, so the spread of activation can be directional. Also, 
the weight of the reciprocal links might differ. 

Technically, this can be realized by representing each element by a central neuron 
with a maximum output activation below 1.0, and four neurons (por, ret, sub, sur) 
connected to its output. The connected neurons each have a threshold value of 1.0, so 
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that the central neuron can not propagate its activation through the surrounding 
neurons, if these do not receive additional activation. 

This additional activation is supplied by a specific activator neuron. There are 
specific activator neurons for each of the four directions; the por-activator connects to 
all por-neurons in the cortex, the ret-activator to all ret-neurons, and so on. If the 
specific activator for a direction is active, the central neuron might overcome the 
threshold of the corresponding connected neuron and propagate its activation into the 
respective direction. (Specific activators should, like general activators, operate on a 
complete cortex field at a time.) 

 

 
Figure 1.7: Quad—arrangement of nodes as a basic representational unit 

These elements of five neurons are called quads. A quad a may be connected to a 
quad b by linking the output of a por-neuron, ret-neuron, sub-neuron or sur-neuron of 
a to the input of the central neuron of b. 
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Figure 1.8: Quads in a cortex field, with directional activators 

When we discuss neural scripts, the basic elements referred to are usually quads. For 
some purposes (i.e. if no conditional spreading activation is wanted), the basic 
elements will be single neurons. To simplify things, I will refer to both quads and 
individual neurons as nodes when they are used as functional units.16 

                                                 
16 The link types are likened to Aristotelian causae (02: 47-48). Por alludes to causa finalis (a 
relation pointing to outcomes and purposes), ret to causa efficiens (a relation pointing out 
things that lead to the thing or event in question), sur to causa formalis (which can be 
interpreted as relating to what the thing or event takes a part in), and sub to causa materialis 
(which relates to material components). In reality, however, semantics is not determined by 
labels that one might stick to the link types, but by their use. In sensor schemas, episodic 
schemas and behavior programs, por and ret are simply ordering relations that mark successors 
and predecessors. Sometimes—but not always—this is correlated with causation. Sub and sur 
are used in hierarchical sensor schemas to identify parts, in hierarchical behavior programs to 
link higher levels with macros (re-usable action-concepts which are indeed parts of the higher 
behavior concepts), and in more general object schemas to connect objects with their properties 
(has-attribute relationship). Thus, I think that in order to expand the semantics of the link types 
towards Aristoteles’ concepts of causal interrelations, additional context would have to be 
supplied. 
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1.4.2 Partonomies 

The foremost purpose of quads is the construction of partonomic hierarchies, or 
partonomies. Here, a concept is related to subordinate concepts via “has-part” links 
(i.e. sub), and these parts are in turn connected to their superordinate concepts using 
“is-part-of” links (sur). Thus, a concept may be defined with respect to features that 
are treated as parts, and superordinate concepts they have part in.  

 

 
 
Figure 1.9: Partonomic structure 

At each level of the hierarchy, nodes may be interrelated with their siblings to denote 
spatial, temporal or simply execution order relations. Such orderings are expressed 
with por (and with ret in the inverse direction). As we will explain shortly, por-links 
may be annotated with spatial and temporal information. 

Por-ordered nodes can be interpreted as a level in hierarchical scripts: each node 
is executed by executing its sub-linked children, before execution continues at the 
por-linked successor. At the lowest level, the quad hierarchies bottom out in sensors 
and actuators. Thus, partonomies in Psi agents may also be used to represent 
hierarchical plans. It is even possible to link a sub-tree at multiple positions into the 
hierarchy. This sub-tree then acts like a macro (as Dörner calls it) and aids in 
conserving memory.17 (99: 189) 

Note that Dörner usually only connects the first node (“Kopfknoten”) in a por-
linked chain to the parent. This reduces the number of links necessary. However, to 
perform backtracking in such a script, the execution has to trace back to the first 

                                                 
17 If multiple features with identical representations are referenced several times, a special case 
of a binding problem might occur. Especially if a partonomy is interpreted as a plan executed 
in parallel, the question how to handle multiple instances of parts arises. 
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element of the node chain, and the fact that all elements of the chain are parts of the 
parent is not emphasized.18 

1.4.3 Alternatives and subjunctions 

Por-linking a chain of nodes that are sub/sur linked to a common parent allows for 
expressing a subjunction. Nodes, or por-chains of nodes that share a common sub/sur 
linked parent and that are themselves not por-connected, are interpreted as disjunctive 
alternatives. A node that has alternative parts or successors is called a hollow 
(“Hohlstelle”) due to its looseness in the resulting specification. Hollows are 
important to generalize representations and to represent abstractions. (99: 142-143) 
There are two kinds of hollows: 

- alternative successions (branching por-chains) express structural abstractness 
- alternative elements (branching sub-links) express element abstractness 

 
Figure 1.10: structural abstractness vs. element abstractness 

1.4.4 Sensory schemas 

Sensory schemas are partonomic hierarchies that represent the sensory (for instance 
visual) make-up of an object. Here, objects are considered to be made up of sub-
objects, these again of sub-objects and so on. This relationship is expressed by 
sub/sur linkages. On the lowest level of the hierarchy are sensor elements that 
correspond to perceptible features. 

Sensory schemas are the way descriptions of situations or objects are represented. 
They are not images of things; rather, they are descriptions of how to recognize 
things.  

For visual or tactile descriptions, it is often impossible to access multiple features 
simultaneously, because the sensors are spatially restricted. Thus, for visual 
descriptions, a retina might have to be moved, and for tactile description, a tactile 
sensor needs to be repositioned. This is done by arranging the sensory events on a 
por-chain with intermittent activations of retinal muscles etc. This intermittent 
activation may be translated into horizontal and vertical components and used as 
spatial annotations on the por-links between the sensory events. These spatial 
annotations are just shorthand for the actions that need to be performed in order to get 
a sensor from one spatial position to another.19 (02: 51) 
                                                 
18 This is not completely dissimilar to Anderson’s notation of lists in ACT* (Anderson 1987): 
here, all elements are partonomically linked to the parent, but usually only the first and the last 
one have strong link weights. 
19 It might seem strange that por-links are also used to denote spatial (and not causal) 
relationships in sensor schemas. This is due to the fact that a sensor schema is in fact less an 
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By using alternatives (“hollows”, see above), it is possible to create less specific 
sensory representations. 

 

 
 
Figure 1.11: Sensor schema to describe a cartoon face 

In current Psi agents, sensor schemas are purely visual and are organized as situation 
descriptions, consisting of objects, consisting of features with Gestalt properties, 
which in turn are made up of line segments, bottoming out in sensors that act as 
detectors for horizontal, vertical and diagonal pixel arrangements. This is a 
simplification and should probably be treated without loss of generality with respect 
to the theory. The lower levels might refer to angular frequencies in general, for 
instance, and the number of levels in the hierarchy needs not to be fixed. 

 

1.4.5 Effector/action schemas 

An action schema can be anything from a low-level motor behavior to a full-blown 
script, for instance a hierarchical algorithm for visiting a restaurant (Schank and 
Abelson 1977; 99: 106). Just like sensor schemas, action schemas are partonomic 
hierarchies. Every node represents an action at some level, which is made up of 
(possibly alternative) por-linked chains of sub-actions. At the lowest level of the 
hierarchy, action schemas bottom out in actuators, which are performing operations 
on the agent’s environment or the agent itself (02: 54-56). 

                                                                                                                    
image then a script that defines how to recognize an object. Thus, the features in the sensor 
schema can be interpreted as a subjunctive sequence of observation events (02: 50-53). 
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Alternatives in an action schema should be handled by trying them (concurrently 
or subsequently) until one succeeds or none is left. Like in sensor schemas, 
alternatives lend more generality to the action descriptions. 

1.4.6 Triplets 

Triplets have been described by Friedhart Klix (1992) and are essentially 
arrangements of  

- a sensor schema (pre-conditions, “condition schema”) 
- a subsequent motor schema (action, effector)  
- and a final sensor schema (post-conditions, expectations) (99: 97)  

Triplets are helpful in planning and probationary action (“Probehandeln”) (see Klix 
92, p. 75).  

Pre-conditional sensor schemas are essentially descriptions of those aspects of the 
world that need to be present for the action schema to work. The post-conditional 
sensor schema describes the state of the world after the application of the action 
schema. By matching pre-conditions and post-conditions, it is possible to “domino-
chain” triplets into longer behavior sequences—a method that is used for the 
description of chained reflexes (Braines, Napalkow and Swetschinski 1964). For an 
example, imagine a script to grab a teacup. This might consist of chained behavior 
loops: one to locate and assess the teacup, another one to move the hand towards it 
until the proper distance is reached, a further one to open the hand to a suitable span, 
then a loop to close the fingers until the tactile feedback reports an appropriate 
pressure and hold, followed by another loop to lift the cup (99: 96). 

 
In cognitive psychology, models are often based on production rules (Post 1921; 
Newell 1973); a production describes how to behave under which circumstances in 
which way (99: 103). When comparing triplets to productions, a few differences 
immediately catch the eye:  

Productions are usually defined in a form such as “prod:= if (goal=X and 
precondition=Y) then Z” (see Anderson 83, p. 8 for an example). Thus, conditions of 
productions are made up of two elements, a goal and a precondition. In triplets, the 
goal does not have to be known. (The outcome represented in the post-conditional 
schema can be very general and is not necessarily a goal.) This might be seen as an 
advantage of triplets over productions, since in real-world environments, actions may 
have too many possible outcomes to consider them all, lest relate them to goals. Note 
that like many researchers in cognitive modeling, Anderson mainly examines mental 
tasks like addition. These tasks are usually not characterized by many possible 
outcomes (99: 105), so the disadvantages of productions do not come into play. 

 
Triplets are often not such clean entities as suggested above. Dörner himself mentions 
(99: 138) that mixing of actions and sensing is necessary, and thus sensor schemas 
and effector schemas will be heavily interleaved. In fact, most action parts of any 
given script will contain sensory checks, and most sensory scripts will embed actions 
that are necessary to move sensors accordingly. On higher levels of scripts, a sense 
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action such as observing an object might require the agent to take a different position, 
open a window and so on, while an action like opening a window will require 
employing a vast number of sensory schemas. 

1.4.7 Space and time 

Sensor and action schemas may express spatial and temporal relationships as well. As 
a shorthand, they might be noted as additional annotations of por/ret links. This, 
however, is just an abbreviation of a mechanism to handle these relationships with 
neural operators: (99: 99; 02: 51) 

Space: For spatial description within visual schemas, a “mobile retina” may be 
used. In that case, the retina will be controlled by actuators (e.g. for vertical and 
horizontal deflection). By changing the deflection of the retina between sensory 
events, a spatial arrangement of features can be traced (99: 138-141). Thus, the agent 
will expect stimuli at certain positions. By using the shorthand notation of annotating 
por-links between spatially arranged sensory features with pairs of numbers 
representing the deflections, further mechanisms may be added, for instance to move 
the retina inversely, if the script is parsed in the opposing (ret) direction, or to 
cumulate retinal movements when ignoring individual features because of occlusions 
or to speed up the recognition process. 

Where the moving retina may cover short distance in spatial representation, large 
distances have to be handled by other means. The agent might move, for instance. 
There is no essential difference between the spatial relationships in the sensory 
description of a small object and the relations between places on a topological map of 
the agent’s environment. 

Time: Spatially distant events can be represented with annotated sensory 
schemas, and so can events that are distant in time. Working with these 
representations is a different matter, because there is usually no actuator to move an 
agent back and forth in time. The agent will simply have to wait for the specified 
amount of time. 

A general implementation of a waiting mechanism might prove to be no trivial 
matter, as it involves conditional concurrency and the use of multiple internal clocks.  

 
Dörner suggests a simple mechanism to measure time while storing events in a 
protocol chain: between events, a self-activating node increases its activation. When 
the next event takes place, the resulting activation is inverted and then used as the 
link weight on the por-connection between the events in the protocol (see further 
down below for details on protocol memory). Thus, the link weight between 
immediately subsequent events will be strong, while the weight between events 
distant in time will be weak. By choosing an appropriate way of inverting the 
activation of the time-measuring element, the time measure might be linear or 
logarithmic. Using link weights to represent time intervals has several advantages: 
Events that are close to each other tend to be grouped by strong links, and since 
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protocols may decay over time, distant groups of events may be treated as 
unrelated.20  (99: 113)  

To read time from a protocol chain, the measuring process is simply inversed: the 
link weight is read by measuring the difference in activation that can spread from the 
predecessor to the successor element of the protocol chain, then inverted and 
compared against the activation that is built up in a cascade of recurrent threshold 
elements. When the activation in the cascade has reached the same level, a similar 
amount of time will have passed. (99: 115) 

Processes: To represent dynamic processes, such as the visual representation of 
the repeated movements of a walking animal, Dörner suggests storing key frames in a 
loop (99: 188).21 

1.4.8 Basic relationships 

For the description of situations, a number of basic relations and entities are described 
by Dörner. Some are elementary and straightforward, such as the partonomic and 
causal relations. Others are represented as a specific arrangement of causal and 
partonomic relationships, such as the instrumental relation. Specific relationships are 
explained in more detail when it comes to behavior selection (appetence, aversion) 
and language, but some are just being mentioned and not revisited in Dörner’s 
writing. The basic relationships are: 

- causal relations. They connect causes and effects; causes are events that always 
precede the effected events. (Note that in this interpretation, in the case of 
multiple causation, the cause must be an event made up of a disjunction of 
events.) According the semantics of links (02: 38-53), they will usually be 
denoted by por-links (or ret-links in the inverse direction). (99: 259) 

- spatial relations. These are relations between elements that share the same 
spatially annotated por-linked chain of a sensor schema. As explained above, the 
spatial annotations are shorthand to describe a movement action that has to be 
performed by a (physical or mental) scanning sensor from the position where the 
first element can be observed to the position of the other element. (99: 138-141)  

- temporal relations. Temporal relations are temporally annotated por-links 
between elements of an episodic schema. (Dörner suggests that the link weights 
could be used as annotation, where strong weights signify short intervals and 
thus more strongly connected events.) (99: 113) 

                                                 
20 The strength of links between elements of a protocol chain is normally used to encode 
frequency/relevance of the relationship. This might interfere with using the link weight as a 
time measure. It is probably better to utilize a secondary link or a separate link annotation. 
21 Clearly, Dörner remains fragmentary here. Because the actual sensory perception will not 
deliver the same key frames as originally stored, some interpolation process will have to take 
place. Furthermore, with the implementation of loops using spreading activation, practical 
difficulties arise, because spreading activation in recurrencies tends to be difficult to handle. 
On the other hand, there are less intuitive, but more robust methods available to represent 
dynamic motion perception with neural representations. Dörner’s suggestion mainly serves the 
purpose of illustration. 
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- instrumental relations. They denote the relationship between an effecting 
behavior and two world states, that is, when an agent actively manages to change 
affairs from one state to the next, then how it did so, the action that allowed it to 
do it, is connected with an instrumental relationship. According to the triplet 
concept, an instrumental relation would be a sub-link from a protocol element 
(denoting the change-event) onto a behavior program (or a sur-link in the inverse 
direction). 

- final relations. They connect goal-oriented behaviors to why, what for they took 
place, i.e. the situation effected by them. There is probably no direct link in the 
notation to denote this, rather, the final relation amounts to a sur-link to the 
change event, followed by a por-link to the caused event (or a ret-link followed 
by a sub-link in the opposite direction). 

- actor-instrument relations. They point out who/what has caused something with 
what. To that end, they link between a representation of an agent in a given 
situation and its action (probably sub) (99: 261). An agent is a role that would be 
identified by something apparently acting on its own behalf, something that it is 
not an instrument in the given context (99: 260). 

- partonomic relations. As seen above, they relate elementary properties with 
objects, elements with sets and socks with drawers. They are recognizable by 
sur-links between object schemas (or sub-links for the opposite direction). 

- is-a relations. This is the relationship between objects and their categories, where 
the category is a more abstract object that allows to accommodate the more 
concrete one, but not vice versa (99: 265). I believe there is no special link type 
to denote this kind of compatibility (although the relationship is clearly 
mentioned in (Schaub 1993) as “Abstrakt-Konkret-Relation”), and it does not 
seem quite acceptable to use a sur-link or sub-link (even though categories can 
be seen as derived from sets). It would be possible, however, to define a 
compatibility checking behavior program that recognizes for pairs of objects 
whether they are in a is-a relation to each other. It could then be marked by using 
symbols, for instance with word-labels (which are properties of objects): there 
would be a word-label linked to both the object and its category, and another one 
linked only to the object, but not to the category. This is probably what Dörner 
means when he suggests that word-labels could be useful to express categorial 
relationships (99: 267). 

- co-hyponymy relations (“co-adjunctions”). Two elements that are mutually 
exclusive sub-categories of a given category are called co-adjunctions. They 
partition the space of a given category into equivalence classes (99: 208). 

- similarity relations are not explicitly defined but mentioned. Similarity consists 
in partial identity; by comparing objects with a low resolution level (see below), 
the dissimilar features might be ignored - the similar objects seem equal then (99: 
222). Dörner’s account of computing identity not by a distance metric, but as a 
function of matching features might be compatible for instance with Tversky 
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(1977). Algorithms for obtaining similarity measures have been hinted at by 
Dörner, but not been discussed in detail.22  

- appetence relations. These are por-links between a need indicator (see below) 
and an action alleviating the related demand (99: 305). 

- aversive relations connect a situation schema that causes the increasing of a 
demand with the respective need indicator (por) (99: 307). 

Furthermore, in the work of Johanna Künzel (2004), which aimed at enhancing 
Psi agents with language, a relationship between pictorial descriptions and language 
elements was introduced; the respective link types were called pic and lan and 
connected quads representing sensory concepts with other quads representing word 
schemas. 

1.5 Memory organization 

The working memory of Psi agents consists of  
- an image of the current situation, 
- the expected future events (expectation horizon),  
- the remembered past (protocol) and  
- the active motives, including goals and related behavior programs (intention 

memory) (99: 516). 
Before these elements can be discussed in detail—we will revisit them in the sections 
dealing with perception (1.6) and motivation (1.8)—let us introduce the different 
kinds of representation.  

 
Earlier work from Dörner’s group (Gerdes and Strohschneider 1991) describes the 
memory as consisting of three interlinked structures:  

- The sensory network stores declarative knowledge: schemas representing images, 
objects, events and situations as hierarchical (partonomical) structures. 

- The motor network contains procedural knowledge by way of hierarchical 
behavior programs.  

- Finally, the motivational network handles states of demands (deprivations) of the 
system, which can be simple (like the one-dimensional physiological demands) or 
complex compounds (like many social demands).  

However, these networks are not separate—they are strongly interconnected (Dörner, 
Schaub, Sträudel and Strohschneider 1988, p. 220). “In general, all the knowledge of 
PSI is stored in one network, called triple-hierarchy.” (Gerdes, Strohschneider, 1991) 

1.5.1 Episodic schemas 

Episodic schemas (“Geschehnis-Schemata”) stand for chains of events without the 
direct interception of the agent, as opposed to behavior schemas. Episodic schemas 

                                                 
22 The idea of capturing similarity with partial identity alludes to Rudolf Carnap and indeed 
one of the chapters is named after Carnap’s famous book “Der logische Aufbau der Welt” 
(1928). 
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are partonomic hierarchies and include sensory schemas that are connected with 
(temporally annotated) por-links to indicate their sequential nature. Episodic schemas 
can branch to convey multiple possible outcomes of an event (structural abstractness). 
These branches are acquired by witnessing different outcomes of events and 
integrating them within the same event chain (99: 112). 

1.5.2 Behavior programs 

Behavior programs (“Aktions-Schemata”) add action to the episodes; they are 
episodic schemas incorporating actions of the agent itself. They consist of chained 
triplets: sensory descriptions of world states are followed (por-linked) by possible 
actions of the agent. Behavior programs the way Psi agents store procedural 
knowledge. 

Like episodic schemas, behavior programs are hierarchies of por-linked 
sequences. At the lowest level, they refer to sensory and motor events. 

The hierarchical structure of behavior programs makes it possible to express 
complex plans with different levels of abstraction—from primitive motor skills to 
abstract actions consisting of multiple realizations. By exchanging links between 
nodes at higher levels of abstraction, knowledge can be rearranged, and symbolic 
planning might be realized. (99: 129; 02: 54-56) 

Through trial-and-error learning, Psi agents add branches to behavior programs. If 
a part of a behavior programs gets into disuse, the links to it decay over time, until 
this part is removed altogether. (99: 130, 131) 

 
Dörner suggests a simple algorithm to execute behavior programs; i.e. to perform a 
plan, it may be instantiated in some cortex fields (see above) and then accessed by 
another behavior program acting as a control structure to oversee its execution.23  

 

                                                 
23 It might be desirable to execute some behavior programs without the use of an external 
control structure. Under certain circumstances, it might be possible to do this just by spreading 
activation, however, for backtracking, control information will have to be stored in the form of 
a stack or as additional states within the program elements. 
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 “Activate behavior program” 
 
1. Initialize by putting first program node (‘interneuron’) into list 
2. until list is empty: 
3. choose element from list 
4. if element is a motor node: 
5.   activate element 
6.   empty list 
7.   put all direct successors (‘por’-linked nodes) of element into list 
8. else (i.e. element is a sensor node): 
9.   if perception of element is successful: 
10.    empty list 
11.    put all direct successors of element into list 
12.   else (i.e. expected element could not be perceived): 
13.    if list is empty (i.e. no alternative expectations): 
14.     end with failure 
15. repeat (until list is empty) 
16. end with success 

Algorithm to execute behavior program (99: 100, fig. 2.5) 

The algorithm simply chooses the next connected elements. If the element amounts to 
a sensory schema, it is validated according to available sensory information. If the 
element is a motor schema, it is activated.24 The validation of sensory schemas might 
fail; in this case, alternatives are checked. If no further alternatives are available, the 
execution of the behavior program fails. 

1.5.3 Protocol memory 

While the agent interacts with its environment, it records its history, that is: the 
situations/events it encountered and the actions it performed, in the form of a 
protocol. The protocol memory is made up of a chain of hierarchical situational 
descriptions. 

Because the protocol memory is an assembly of behavior programs and episodic 
schemas, it consists of hierarchies as well. Low level sensory information and motor 
behavior is included by referencing it partonomically from higher, more abstract 
levels in the protocol scripts (99: 89). At each level, successive elements in the 
protocol chain are por/ret linked. 

                                                 
24 To be useful for hierarchical scripts, the algorithm should traverse sub-schemas recursively, 
and a mechanism for back-tracing should be added. 
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Figure 1.12: Schematic protocol (99: 51) 

Protocols are acquired by copying the current situation image (see below) to the 
present head of the protocol chain. Of course, it is not necessary to literally copy all 
the details of the situational descriptions; situation images are essentially just 
concepts that hold sub/sur references to the individual objects. It is sufficient to copy 
only these sub-references, which in turn activate (hierarchical) object descriptions in 
long term memory. (99: 109-112) Still, for each situation at least one new neuron has 
to be recruited. A “plastic cortex” that holds all the protocol nodes serves this 
purpose; whenever a further node is required, it is fetched from the least-used nodes 
in the pool. (Dörner calls this process mockingly “the polonaise of memory” 
(“Gedächtnispolonaise”), because of the way the protocol chain subsequently snakes 
and crawls through the protocol cortex field.) (99: 122) 

 
The protocol is the main source for the learning of the Psi agents. This is achieved by 
a way of retro-gradient reinforcement (“rückläufige Afferentiation”, see Lurija 1992, 
p. 88; 99: 89). Whenever the agent encounters an event that is accompanied by a rise 
or decrease in a demand (i.e. the agent is subjected to a displeasure or pleasure signal, 
see above), it strengthens the links to the immediately preceding protocol elements. 
This strengthening also applies, but to a lesser degree, to more distant predecessors, 
until at last it tapers out.  

After a motivationally relevant event, activation is propagated backwards along 
the protocol chain, and sub-wards into the hierarchical situational descriptions that 
make up its content. Along with the propagation of activation, links are strengthened 
according to  

 ( )( )2

, ,min ,new
i j i jw maxWeight w ReinforcementSignal= +  (1.6) 

where the value of the ReinforcementSignal is derived from the propagated 
strength of the demand change (02: 160-163). Because the growth of the link weights 
depends on the square root of the initial link weight, connections are increased slowly 
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at first and quicker, if the link is already quite strong. Furthermore, because the 
propagated activation becomes weaker with every step of spreading, the effect of 
reinforcement ceases after a few elements. Hence, the strength and depth of the 
reinforcement taking place depends on the familiarity and on the importance (the 
motivational relevance) of the recorded event (99: 118-121).  

This groups aversive and appetitive event sequences, that is, successions of 
incidents that have lead to a negative or positive outcome. Based on this knowledge, 
the agent will decide on what to avoid, and what to strive for (99: 301f.). Of course, 
conflicts will still remain possible, for instance when an appetitive sequence (like 
devouring tasty food) eventually leads to an aversive situation later on (like punishing 
stomach cramps). The actual decision will depend on the depth of the anticipated 
expectation horizon (i.e. the depth of the memory schemas considered for planning at 
the time of decision making), and on the current urgency of motives (avoidance of 
starvation vs. avoidance of pain). The mechanisms of planning and decision making 
will be discussed in more detail further down below.  

 
Besides retro-gradient reinforcement, Psi agents draw on another learning 
mechanism: strengthening by use. When revisiting sequences of events and actions 
(see expectation horizon down below) or re-executing plans, the particular links 
weights are increased (02: 164) according to:  

 ( )2

, ,
new
i j i j jw w L A= + ⋅  (1.7) 

At the same time, the protocol is subject to a gradual decay of the links (see the 
section about associators and dissociators), unless the link weights are above a 
“forgetting threshold” T. Over time, this leads to a fragmentation of the protocol 
chain: the history of the agent will be recorded as a set of loosely or even 
unconnected “islands” (99: 116) that may be used for the retrieval of episodic 
schemas and behavior programs in the future (99: 112).  

Because not only the por-links between successive elements decay, but also the 
sub-links to parts of descriptions of situations and actions unused features may 
disappear over time. This leads to some abstraction by forgetting of detail (99: 126, 
183, 222), because events that looked different at first may become similar after a 
time, and only those features are put into regard that bear a relevance to the particular 
outcome. 

The strengthening-decay mechanism is able to discover related events well if they 
frequently co-occur and provided they are not spaced apart by intervals of different 
intermittent events. Obviously, a weakness of this scheme is its inability to discover 
relations between events that are far apart in time. Long-term dependencies are just 
not related between each other in memory. Dörner notes this (99: 126) but points out 
that this might not be a flaw of the model, but a problem of human performance as 
well. Humans may overcome these restrictions only by relating distant events using 
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other strategies: the events are arranged as successive elements using hierarchies, or 
they are organized by addressing them with language.25 

 
Early in their history of learning, the Psi agents will store predominantly low-level 
representations of actions in the protocol, because hierarchies, in which low-level 
scripts have been grouped into super-concepts, have yet to be formed. With the 
formation of abstractions (like a concept that summarizes a complete visit to a 
restaurant), maintaining the protocol memory becomes more efficient. Instead of 
representing individual actions, their higher-level abstractions are stored. Thus, with 
growing age of the individual, automatisms and scripts tend to be highly consolidated 
and cover most events, and consequently, the protocol gets increasingly sparse (99: 
118). 

1.5.4 Abstraction and analogical reasoning 

Psi agents establish the factuality of an object or situation by attempting to verify its 
(sensory) schema. The more features are defined and the narrower they are specified, 
the more constrains apply. To capture things with differences in their features within 
the same schema, two mechanisms can be employed. The first is an abstraction by the 
neglect of detail (99: 135); different things will then “look” identical. The other 
method is the use of alternative sensory descriptions, which are subsumed within the 
same sensory schema. Both methods amount to the introduction of hollows/cavities  
or open slots (“Hohlstellen”) into a schema. The extreme case is a schema that has no 
features (sub-linked sub schemas) at all, such a completely abstract schema 
(“Hohlschema”) would match to absolutely everything.26 (99: 143) 

To match features with continuous values, Dörner also suggests the introduction 
of some kind of range abstractness (“Abweichungsabstraktheit”): here, spatial and 
temporal annotations should not only match when exactly at a target value, but also 

                                                 
25 For example, the relation between planting a seed and harvesting a plant is probably not 
discovered directly by examining the unaltered protocol of the individuals everyday-affairs, but 
by re-arranging and grouping actions into a hierarchy with respect to the location, the seasons 
and so on. In order to conceptualize the planting season as one kind of event, and the 
harvesting season as another, successive event, the individual will need to build categories of 
large time-spans. When looking at the protocol memory with respect to actions at a given 
location and according to such time-spans, planting and harvesting may indeed appear to be 
neighboring events and treated as such. 
26 Dörner mentions several ways of “relaxing” schemas: the addition of alternative features, 
the removal of features, the random or heuristic neglect of features (to speed up recognition) 
and special solutions to increase the limits within which foveal sensors accept spatially 
distributed features. But because hierarchical sensor schemas are in principle multi layer 
perceptrons, further ways of loosening the constraints of sensory descriptions are available: the 
use of distributed representations and variable weights allows for fuzziness in the feature 
acceptance and in the definition of the features themselves. It might also be useful to change 
the propagation functions to implement more efficient types of distributed representations. 
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when within a certain range (02: 60). Although no details for the implementation are 
explicitly given, numerous approaches (like radial basis functions etc.) might lend 
themselves to the task. 

 
Because abstract schemas may accommodate more concrete schemas, they might also 
be used like super-categories (99: 243) of the respective objects, where a concrete 
schema matches perhaps only a single individual object or situation, its abstraction 
could inclusively match with other objects as well. Abstract schemas could also aid in 
analogical reasoning.  

A method for generating new hypotheses with some kind of analogical reasoning 
works by merging similar situations and treating them as identical.  
 

 
 
Figure 1.13: Construction of a new schema by superposition of input and output 
schemas (99: 371, fig. 5.12) 

When looking for a way to get from a situation A to a goal situation D, where it is 
known that by applying action a to A, we are reaching a situation B, by applying b to 
a similar situation B’, we get to C, and by application of c to a similar C’, we reach D. 
By merging the similar situations B and B*, and of C and C*, we get a chain of 
situations from A to D by application of the actions a, b and c. This hypothesis can 
then be treated as a behavior program and will get evaluated when executed (99: 
371). 

If the agent has formed functional categories, and a single element is missing for 
the fulfillment of a plan, a straightforward procedure consists in looking for the 
functional category of that element (in the given context), and trying to replace it with 
a different element of the same category. As a colorful example: How would one go 
about fixing a leaking canoe? After identifying the category of the leaking ingredient 
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(a hull of bark that has been punctured), the culprit might be replaced with another 
member of the same category (i.e. another piece of tree bark). If that is not available, 
how about identifying the functional category of the bark: here, it is a membrane 
keeping the water away. Perhaps, a different example of a waterproof membrane is 
available, such as an old plastic bag? If that’s the case, we may attempt to replace the 
missing piece of bark with the new membrane (99: 270). 

Consequently, a way to construct completely new solutions for a given problem 
consists in identifying all functional categories and successively filling in different 
examples of these categories in such a way as to maintain the functioning of the 
plan.27 Still: so far, only few ways of analogical reasoning have been discussed by 
Dörner.  

1.5.5 Taxonomies 

The sub-relations and sur-relations of quads span partonomic hierarchies, where each 
element can be defined by its parts. This is different from a taxonomic (“is-a”) 
hierarchy, where the elements are categories made up of sub-categories. There is no 
link type for is-a relations, but it is possible to express a more abstract category a by 
defining fewer properties than in the sub-category b (that is, by replacing individual 
properties of b by alternatives, values by ranges or omitting a constraining property 
altogether): as explained above, such an abstraction is called hollow schema 
(“Hohlschema”) (99: 243). We may define (without loss of generality):  

  is-a , iff sur : sur sur : surb a p a p b q b q a∀ ∧ ¬∃  (1.8) 

i.e. all properties of a are properties of b, but none of the properties of b 
contradicts a property of a. We can call this a ‘accommodates’ b (99: 265) and may 
use this relationship for perceptual and for reasoning processes.  

Within Psi agents, the is-a relation could be identified and expressed with the aid 
of word-label symbols: one word-label could refer to both the super-category and the 
sub-category, another one only to the sub-category (99: 225, 267). Note that this does 
not mean that we are replacing the category by a word-label! This label would merely 
be a way of referencing two concepts, of which one has accommodating properties 
towards the other. Thus, the word-label would become an identifier of the class; for 
example, the word-label “cat” possibly evokes both a schema of a concrete tabby 
with plush ears, and a schema of a generic cat characterized merely by its feline 
properties.  

                                                 
27 An example for finding a solution to a constructive problem by analogical reasoning as 
given by Dörner: to construct a watch, one may determine the functional categories of the 
parts: face—set of display states, hands—pointers to identify a display state, spring—energy 
storage, clockwork—regulation mechanism, using energy in regular intervals to update the 
display. Then successively fill in new exemplars of the same category: use a water reservoir as 
energy storage, a pendulum regulated outlet (or simply a dripping outlet) as regulating 
mechanism, and a glass cylinder with a scale as display, with the water collected in the cylinder 
indicating the time (99: 263). As the example suggests, there are at least two strategies at work: 
first, a replacement of parts by category, and second, each new, individual part is chosen 
according to the context set by the others. 
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Yet, the word-label itself would not distinguish the levels of generality of the 
schemas. If two different categories match on a given object, it is impossible to 
identify whether a category A belongs to a category B or vice versa, and it has still to 
be established which one has the accommodating property towards the other.28  

Partonomic hierarchies are fundamentally different from taxonomic hierarchies. It 
will not be acceptable to use sub-links between schemas representing different 
concepts to express a categorical relationship between them, because sub establishes 
a partonomical relationship (“has-part”), which is semantically different from a 
taxonomical relation (“is-a”), and a model of the Psi theory will need to use other 
means if categorical relationship have to be represented, for instance associative links 
along with a specific identifying feature for the more general concept. 

Dörner takes an interesting stance in the debate whether representations of object 
categories are represented as prototypes or as alternatives of exemplars (Harley 1995, 
Anderson 1996): both should be possible. A prototype (that is: a schema neglecting 
detail or averaging over properties and implementing some kind of range 
abstractness) could be used to describe objects with great similarity (for instance, 
bananas), while a set of exemplars might be better suited to represent a heterogeneous 
category (like houses). In the latter case, all of the members of this category would 
receive some activation, but only the strongest would get to the attention of the 
system and would thus appear like a prototype. Whenever the given context 
suggested a different member of the category (i.e. it receives more activation than the 
previously strongest element), the “pseudo-prototype” would flip into a different one 
(99: 604-611). 

1.6 Perception 

The core of perception is to recognize something as something (99: 135), in other 
words, it consists in matching the perceived entity into an established schema that is 
suitably interrelated to the other representations the agent possesses with regard to its 
world. Perception has to fulfill the following tasks: (99: 134) 

- connect stimuli with memory content (i.e. matching schemas), 

                                                 
28 As a note to the computer scientist: The Psi theory currently does not deal with inheritance 
of properties between categories. However, the category relationships may possibly call for 
extensions in the current representations of the Psi theory, if one wants to use them for 
associative mechanisms that implement polymorphic inheritance of properties between 
categories. At the moment, category relationships between two concepts A and B would 
strictly require that A accommodates B (99: 265), and do not go beyond that. A and B could 
use a partially shared representation, but as soon as B sports a property that is not part of A 
(polymorphy), the categorical relationship would cease. Take the relationship between a 
concrete tabby and the general housecat as an example. The latter (accommodating) concept 
might specify four legs and a tail. In the instant our tabby has an accident and looses its tail, the 
more general category stops to be accommodating and is merely a better example of something 
activated by the word-label “cat”. We can overcome the polymorphy-problem by representing 
the poor tabby with a ‘tail that has gone missing’ instead of no tail at all, i.e. refrain from 
polymorphic inheritance.  
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- use sensor schemas in such a way as to recognize things with different 
appearances as identical, if appropriate (i.e. generalize), 

- if no matching sensor schema is found, then create a new one (or adapt an old 
one). 
As we will see, in Psi agents these goals are served mainly by the HyPercept 

mechanism—perhaps the most central behavior program of all. HyPercept 
(hypothesis based perception) attempts to predict what is there to be perceived and 
then attempts to verify these predictions using sensors or recollections (Schaub 1993). 

1.6.1 Expectation horizon 

To improve the speed of recognition, predict imminent events and measure the degree 
by which the Psi agent has gained an understanding of its environment, the perceptual 
system maintains a set of expectations. This set is basically a projection of the present 
into the immediate future, a prognosis that uses episodic schemas (99: 128)(Schaub 
1993, pp. 87), which may be called expectation horizon. The elements of the 
expectation horizon are successive situational descriptions (episodic schemas) 
derived associatively from the protocol memory of the agent. The execution and 
outcomes of actions that are part of currently activated behavior programs are part of 
the expectation horizon as well. 

 
Figure 1.14: Expectation horizon (99: 196, fig. 3.23) 

The expectation horizon will typically be more than a single por-linked thread of 
events. Rather, because many situations and actions have more than one outcome or 
are not fully explored, it may contain branches and dead ends, depending on the 
knowledge the agent has previously acquired. Many alternative outcomes of 
projected episodic schemas lead to “tattered fringes” of the expectation horizon. To 
the agent, this gives an important clue on where to put attention—it should focus on 
those areas with a high branching factor, because here, uncertainty looms. The 
monitoring of the properties of the event horizon (its depth and branching factor) and 
the comparison of the expectations with the events as they are actually unfolding in 
the environment lead to specific reactions within the agent. Depending on the 
motivational relevance of the events in question, the results of the comparison 
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influence the behavior regulation and make up distinct configurations that humans 
would perceive as emotions (for example surprise, wonder, startling or fear) (99: 196-
198). (Emotions and the regulation of behavior will be discussed in sections 1.9 and 
1.8 ) 

The test of the expectation horizon takes place in regular intervals, and a breach of 
the chain of expectations triggers an explorative behavior by establishing an 
explorative motive (99: 208; Dörner, Stäudel 1990, pp. 309). 

1.6.2 Orientation behavior 

A violation of the perceptual expectations of the agent leads to a momentary 
disorientation, and triggers an orientation behavior. Pavlov (1972) described this as a 
“what-is-this” reaction”. Here, it works by setting the perceptual process to the 
unknown object (or more generally: including the object into a list of to-be explored 
objects) and raising the agent’s general readiness for action (activation modulator, see 
below) (99: 212-213). 

1.6.3 HyPercept 

The concept of Neisser’s perceptual cycle is paradigmatic to a lot of work in the 
cognitive science of perception and in cognitive modeling. The idea amounts to a 
cycle between exploration and representation of reality; perceptually acquired 
information is translated into schemas, and these are in turn used to guide perception. 
The schemas integrate not only visual information, but also haptic, acoustic etc. The 
exploration that is directed by the represented schemas may involve an active, 
invasive sampling of the object in question, which will alter it and in turn influence 
the model of the object. The feedback between perception and representation has 
often been ignored in models that look at them in isolation (see Neisser 1976, p. 21, 
or p. 112 for a more complete description.)  

The Psi theory adopts the principle of the Neisser cycle (99: 144) and extends it 
into a general principle of bottom-up/top-down perception, which is called HyPercept 
(hypothesis directed perception—“Hypothesengeleitete Wahrnehmung”) (Dörner et 
al. 1988; Schaub 1993, 1997). 29 

1.6.3.1 How HyPercept works 
While Dörner offers several algorithmic descriptions, HyPercept may be much more 
a paradigm than an algorithm. The main idea of HyPercept may be summarized as 
follows:  

                                                 
29 Sometimes (see Dörner, Schaub, Sträudel and Strohschneider 1988, p. 226; Gerdes and 
Strohschneider 1991), the whole bundle of perceptual processes of the Psi agents is subsumed 
under the HyPercept label, including the updating and testing of the expectation horizon, 
control of modulator system as far as connected to the perceptual apparatus, and so on. At other 
times, it is specifically the validation of hierarchical schemas by an interlinked bottom up/top 
down tracing process (Schaub 1993; Dörner 1999, p. 145). To avoid confusion, we will use the 
latter meaning here. 
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- Situations and objects are always represented as hierarchical schemas that bottom 
out in references to sensory input. 

- Low-level stimuli trigger (bottom-up) those schema hypotheses they have part in. 
- The hypotheses thus activated heed their already confirmed elements and attempt 

(top-down) to get their additional elements verified which leads to the 
confirmation of further sub-hypotheses, or to the rejection of the current 
hypothesis. 

- The result of HyPercept is the strongest activated (matching) hypothesis. 
- At any time, the system pre-activates and inhibits a number of hierarchical 

schema hypotheses, based on context, previous learning, current low-level input 
and additional cognitive (for instance motivational) processes. This pre-activation 
speeds up the recognition by limiting the search space. 
HyPercept is not only used on visual images, but also on inner imagery, memory 

content, auditory data and symbolic language. Dörner’s actual implementation is 
currently restricted to simplified visual images, however, and his algorithmic 
descriptions are sequential in nature. Sequential processing is adequate for attention-
directed processing, but for low-level perception, it is not a good model. For instance, 
to use HyPercept to recognize speech based on raw auditory input data (as suggested 
in 99: 597), a generalized parallel implementation will have to be used (see further 
down below). 

 
For the purpose of illustration, the simplified version given by Dörner (99: 145, 
extensive description 99: 149-157) might suffice: 

“HyPercept” 
 
1. identify an initial pattern 
2.  create list of all instances of the pattern as it is contained in schema 

hypotheses 
3.  while list not empty: 
4.    choose an instance of the pattern and take it out of the list 
5.  repeat: 
6.    select an untested neighboring element and test its sub-schema 
7.    if element is invalidated, continue w. next instance from list 
8.  until enough neighboring elements are tested or none left 
9. end with success (a schema has been matched)   
10. continue with next instance from list 
11. end with failure (no matching schema has been found) 

A simple HyPercept algorithm (99: 145) 

The algorithm works by taking an initially recognized feature as a starting point. This 
feature does not need to be atomic (i.e. a sensor giving activity as a direct result of 
some primitive environmental stimulus), but can easily be an already recognized 
object concept, which itself is the product of the application of a lower-level instance 
of HyPercept. Next, the algorithm identifies everything that feature could be within 
the available higher level schemas: it does not only retrieve those schemas the initial 
feature is part of, but also takes care of the cases in which the schema occurs at 
multiple positions. All these instances of occurrence of the feature are collected in a 
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list (sometimes called “supra list”).30 The version space of possible theories is made 
up by the instances of all those schemas that contain the elements of the list. 

To find out which schema the feature belongs to, the neighboring features (i.e. 
those that are por/ret linked at the same level of the partonomical schema definitions) 
are successively tested. (This test will usually require a recursive application of 
HyPercept, this time top-down (99: 158-158).) 31 

Whenever a feature is refuted (because it could not be matched with the respective 
sensory input) the local perceptual hypothesis fails, and another instance of the 
pattern within the known set of hypotheses has to be tested. 

When the neighboring elements of the initial feature have been sufficiently 
explored and verified, the parent schema (the one that contains these elements as its 
parts) is considered to be confirmed—e.g. we might have confirmed all the line 
elements that make up a character und consider the entire character to be confirmed 
now. We may then declare this schema to be the new initial pattern and continue with 
HyPercept at the next level in the hierarchy—e.g. to find out which word the recently 
recognized character might be part of, and so on.32 

1.6.3.2 Modification of HyPercept according to the Resolution Level 
If the schema to be checked is sufficiently complex, the application of HyPercept 
might take extremely long, and it is necessary to speed it up, even if that means 
sacrificing accuracy. Obviously, it is much better not to fix this trade-off at a constant 
setting, but to vary it depending according to the given circumstances: How much 
time is available? How crucial is accuracy in the recognition of detail? How 
important is the object in question? What other processes besides perceptive 
recognition are competing for the limited cognitive resources of the agent? 
Depending on these aspects, the agent may vary its level of perceptual resolution 

                                                 
30 There is a potential problem in instantiating all possible interpretations of the feature in 
schemas where it might be contained. If a schema contains a recursive definition (as a 
grammatical schema, for instance, might do), there could be literally infinitely many such 
instances. It will be either necessary to prevent true recursion and loops in schema definitions 
or to look for remedies, for instance by increasing the list of instances iteratively during testing. 
31 To check a neighboring feature, the agent might have to move its foveal, tactile or other 
sensors accordingly to the relation that it has to the original pattern (see section on spatial 
annotation above). If the feature is of a different modality however, it might be sufficient just 
to  assess the current result of the sensors the feature is grounded in (for instance, if a 
neighboring feature is of olfactory nature, it may suffice to take the current output pattern of 
the olfactory sensors into account). 
32 Here, we see a potential weakness of HyPercept, if it were to stop after the first recognition. 
If we are recognizing a character in handwriting, there may be more than one possible 
interpretation. If we just stick with the first one, and we do not find a matching word the 
character is part of later on, we might want to maintain a few alternative interpretations! This 
requires a very simple modification; instead of representing the confirmation or refutation of a 
schema, we may store a link weight that corresponds to the quality of the match. If we do not 
restrict HyPercept to the processing of lists but to sets of elements that might be examined in 
parallel, we might devise a HyPercept algorithm that gracefully supplies alternatives between 
its different instances along the hierarchy. 
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(“Auflösungsgrad”). The resolution level specifies which fraction of the available 
features is taken into account during the HyPercept matching process (99: 148).33  

Features should best not be randomly neglected, but weighted by relevancy, and 
ignorance should start at the least relevant ones (99: 178). The most relevant features 
are ideally the ones giving best distinction from other objects in the version space. 

To further improve recognition performance, alternative hypotheses should be 
ranked somehow according to their likelihood and checked in that order. This 
amounts to a priming of the hypotheses, and is based on already perceived patterns 
and the current goals (99: 179); it may also depend on already recognized objects. 

Because perception usually serves some goal, the order of hypothesis checking 
should also be modified according to the context that is set by the motivations of the 
agent (see section 1.8.2) (99: 149). Generally, the ranking of hypotheses takes place 
by pre-activating them through a spread of activation from the associated context (99: 
168). 

 
There is an additional application for the resolution level parameter: Sometimes, it is 
helpful if the agent is not too finicky about object recognition and recall, because 
limited accuracy in matching might help grouping similar objects—this kind of over-
inclusivity may sometimes be a useful source for abductive hypotheses. Thus, under 
certain circumstances, it might come in handy to control how exactly schemas have to 
align for the match (99: 183). Generally, in a real world environment where 
phenotypes of objects vary, it is advisable to allow for a certain error rate when 
comparing expectation with sensor data; treating objects of similar appearance as 
identical can be utilized to adapt the schemas gradually, so they accommodate more 
objects over time (99: 222). 

1.6.3.3 Generalization and Specialization 
The evaluation of schemas that have been sufficiently but incompletely matched to 
sensory data might lead to slight adaptations. Sometimes, however, more thorough 
changes might be necessary, if the agent learns that dissimilar appearances belong to 
the same class of object. A way to achieve such a schematic generalization consists 
in adding new sub-schemas as alternatives to the given schema. 

Conversely, if a misclassification occurs, specialization of a schema might work 
by removing sub-elements that have presumably led to misclassification. Also, if sub-
elements are not longer used to distinguish objects, their links might deteriorate until 
these sub-elements disappear from the schema. 

1.6.3.4 Treating occlusions 
If a part of an object is occluded by another (or just by the edge of the field of vision), 
the object might still perfectly match its representation if the missing parts are 
“hallucinated”. This is really quite simple to achieve. Once it is established that a 

                                                 
33 Some evidence that this is an adequate model comes from Kagan (1966) who tested human 
subjects for individual differences in ignoring details of pictures that were presented to them. 
Still, the approach is not without problems. Dörner himself notes that in most circumstances, 
the error rate of recognition grows faster than time is saved by ignoring features. (99: 175-177) 
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portion of the sensory field is occluded, these imperceptible areas are ignored during 
testing; HyPercept just pretends that the respective features are there (99: 164). In 
order to tell occluding layers from those that are occluded, it is in many cases helpful 
to add a depth of vision detection mechanism to the perceptual repertoire.34 

1.6.3.5 Assimilation of new objects into schemas 
Most of the time, it may suffice to match sensory input to existing schema 
hypotheses, but every once in a while the agent is bound to encounter something 
new—an object that does not match to any known structure. For the incorporation of 
new objects into the agent’s visual repertoire (assimilation), Dörner proposes a 
scanning routine: 

The scanning starts out with a spiral movement of the retinal sensor to identify the 
beginning of new features. The retina then traces along the structure of the object in 
question, until it does not find a continuation (this only works if it is always possible 
make out clearly if a structure is connected or not). This endpoint might act as a 
distinctive feature, and the system starts the HyPercept process to check whether it is 
part of an already known schema. If no matching schema is found, the system has to 
accommodate a new structure. 

Starting from the previously identified end-point, and under the assumption that it 
is part of a line structure, the scan process determines the direction of continuation of 
this line and follows it until its other end. Any branches that are passed along the way 
are recorded into a list and will be revisited later on. At these branching points, the 
scan process follows the direction that appears to be the best continuation of the 
current line (in the current implementation, this is simply the straightest 
continuation)35 (99: 213; 02: 114-119). 

A simple version of HyPercept has been put into Dörner’s “Island” agent 
simulation, and there have been successful experiments to recognize cartoon faces 
with the algorithm (99: 160). As it turns out, the visual scanning performed by the 
perceptual process appears very similar to that of humans (99: 162).   

To get HyPercept to work on real-world imagery, many possible modifications 
may improve its suitability to the task. For instance, the matching process could be 
combined with transformation layers that allow for perspective correction (i.e. a 
skewing, shearing or rotating of coordinates in sensor scripts that is put „in front“ of 
HyPercept algorithm) (99: 169-172). 

While the HyPercept algorithm implicitly uses syllogistic reasoning and thus the 
Psi agent can be called a “logic machine” (99: 268), it would be misleading to 
                                                 
34 Dörner asks where the ignorance towards imperceptible features should stop because 
sometimes hallucination would lead to weird and unwarranted results. Simple solution could be 
to check for complete version space (i.e. all object hypotheses active in the current context) and 
accept if result is not (or not too) ambiguous. 
35 The scanning process for lines results implicitly observes Gestalt principles, specifically: 
- Closure—connected elements are grouped 
- Proximity—near elements are grouped 
- Good curve—adjacent line segments with similar angular direction are grouped (Goldstein 
1997, p. 170). 
The rule of experience is implemented by scanning for known arrangements first. 
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compare this to human logic reasoning, which requires the use of language and takes 
place on a different level of the cognitive system.  

1.6.4 Situation image 

Because perception is a costly operation that requires probing of many stimuli in a 
relatively persistent world, a model of the environment is generated, stored and 
operated upon: the situation image (“Situationsbild”). This model is usually only 
slowly and gradually changing. While for instance the agent’s retina is constantly 
moving, primitive percepts change dramatically all the time, the composition of these 
stimuli in the situation image is relatively stable.  

The situation image might be seen as the end of the protocol chain (99: 443), or 
vice versa: the protocol memory is built by successively adding situation images (99: 
111). While the situation image is linked to the past by references into the protocol, it 
also leads into the anticipated future: it is linked into the agent’s expectation horizon, 
which is basically an extrapolation of the situation image derived by extending the 
known episodic schemas into the future (99: 205). 

Within Psi agents, the situation images play the same role as the local perceptual 
space in robotics (Konolidge 2002).  

“Perceptual organization” 
 
1. for all elements in list perceptual area do: 
2. until list is empty or out of time for perceptual cycle: 
3.   select element perceptual focus from list perceptual area 
4.   perform HyPercept on perceptual focus 
5.   if HyPercept ends with successful recognition: 
6.    if found something unexpected (i.e. not in expectation 

horizon): 
7.     surprise! (modification of emotional modulators) 
8.     orientation reaction; 
9.     set up explorative goal to identify conditions of new 

event sequence 
10.   else (i.e. HyPercept did not end with successful recognition): 
11.    wonder! (modification of emotional modulators) 
12.    orientation reaction; 
13.    set up explorative goal to identify properties of new object 
14.   update situation image and expectation horizon 
15. repeat 
16. until out of time for perceptual cycle: 
17. choose random perceptual focus from background (i.e. perceptible but not 

in perceptual area) 
18. perform steps 3-14 for the new element 
19. repeat 

 Algorithm: The organization of the situation image and expectation horizon (99: 209, 
fig. 3.26) 

The building of the situation image is a real-time activity and thus its quality depends 
on the available processing resources. If the agent is under “stress”, that is, if other 
cognitive activity blocks the resources or urgent action is necessary, the construction 
of the situation image might be restricted to a shallow foreground check. If there is no 
time left for background checks, the agent tends to miss new opportunities offered by 
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changes in the environment. This leads to a conservative behavior because new 
objects can not be integrated in situation image (99: 211). 

1.6.5 Mental stage 

While the situation image attempts to capture a factual situation, the agent might also 
need to construct hypothetical situations on a mental stage (“innere Bühne”) (99: 
199), sometimes also referred to as ‘mental projection screen’ (“innere Leinwand”). 
This is basically a situation image used for imagination and can be used to unfold 
sensor schemas or to enact (simulate) behavior programs.  

Here, sensor schemas may be used as plans to create representations of objects. 
(99: 200); sensor schemas are not simply images but scripts that may be used for both 
recognition and imagination (99: 201). Within the mental stage, the implicit features 
of schemas may be re-encoded and recognized, even re-combined into new variants. 
Naturally, such a construction process requires a mechanism to control it, and Dörner 
suggests that language plays an important role here. (99: 202) 

The ‘inner screen’ is also important for object comparison (02: 121-122), that is, 
for the recognition and distinction of complex objects: the respective sensory schema 
is projected (constructed from long-term-memory content) onto the mental stage. 
Then, a logical and-operation is performed with situation image to identify matching 
structures, a logical xor to highlight differences, or a general similarity measure is 
obtained by evaluating the combined activation of situation image and mental stage. 

1.7 Managing knowledge 

The perceptual processes of the agent lead to the accumulation of a protocol memory 
that decays over time, leaving behind weakly or unconnected “islands” of episodic 
schemas and behavior programs that automatically grow into a jungle, given time and 
a sufficiently complex environment (99: 300). The mechanisms operating on the 
knowledge structures have to aim for 

- Correctness: the depicted relationship should be referring to things that are factual 
- Completeness: schemas should be connected as much as possible regarding cause 

and effect, partonomic relationships, possible interactions with the agent etc. 
- Consistency: the outcomes of events should not contain contradictions (99: 280-

281).36  
To provide such necessary “mental forestry”, a number of regularly activated 

behavior routines are suggested: 

1.7.1 Reflection (“Besinnung”) 

The reflection mechanism re-activates and enacts protocol elements to identify new 
connections. It works by using a HyPercept algorithm not on sensory data, but on 
episodic schemas/protocols to recognize them as something (i.e. an abstract or 

                                                 
36 Because, within the style of representation suggested here, this rule can be observed by 
making contradictory outcomes alternatives, we should also aim for sparseness. 
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specific episode schema). Thus, protocols may be extended by adding previously 
occluded bits, which takes place according to an interpreting schema. The extensions 
apply to those points where it is necessary to construct a match to a known routine, 
and where the additions to not contradict what is already known (99: 192-196). 

An example of this would be the observation of someone sitting in a room, being 
served with food, eating and then handing money to another person in the room. After 
heaving learnt about restaurants and the typical behavior in a restaurant, the scene 
could be remembered and interpreted as a restaurant sequence, the eater being 
identified as a guest, the money receiver as a waiter or cashier. At the same time, 
details of the scene stop being remarkable (because they are already part of the well-
known routine) and do not need to be remembered for the specific instance. 

The reflection process should be initiated whenever there are too many unordered 
or loose elements in the protocol, because it tends to compress and order it. 

 “Reflection”: match protocol to episodic schema 
 
1. until no untested candidates for episodic schemas available: 
2. choose episodic schema that could match current [section of] protocol 
3. attempt to match episodic schema with protocol using HyPercept; 
4. until match of episodic schema according to current resolution level 

successful: 
5.   if unmatched sub-schemas in episodic schema left: 
6.    if sub-schema contradicts observed protocol: 
7.     break (i.e. stop matching the current episodic schema, 

continue at 11.) 
8.    else:  
9.     fill in sub-schema into protocol 
10. repeat (i.e. try to match current episodic schema with extended protocol) 
11. if episodic schema matches protocol: 
12.   end with success 
13. repeat (i.e. try with different episodic schema) 
14. end (no episodic schema found)  

Algorithm: Reflection (99: 192, fig. 3.21) 

1.7.2 Categorization (“What is it and what does it do?”) 

Within the Psi theory, categorization is rarely mentioned outside the context of 
language. Categories are also not discussed in the context of memory efficient 
coding, but mainly as an aid in reasoning. An example is a routine that might be 
called “what is it and what does it do?”. This is a behavior that extends the agent’s 
orientation behavior (99: 288) and requires language (99: 289), because it relies on 
taxonomic hierarchies.37 

                                                 
37 Dörner depicts the described categorization process as a kind of serendipitous daydreaming. 
Dreaming is, according to Dörner, a mechanism to perform a similar task as the described 
categorization procedure—the reorganization and integration of freshly acquired content—with 
less control and a higher degree of flexibility. While the elements of dreams might appear 
random, they are probably selected by their relatively sparse connectedness and a high 
appetitive or aversive importance (99: 290-299). Psi agents don’t dream yet. 
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 “Categorization - What is it and what does it do?” 
 
1. until matching category for object is found: 
2. attempt to categorize object; find a category 
3. check categorization by comparing properties of object to other objects 

of same category; 
4. if object matches category: 
5.   try to identify episodic schemas related to object; 
6.   if applicable episodic schemas identified: 
7.    end with success 
8.   else (i.e. no episodic schemas found): 
9.    search for category of higher order (super-category) 
10.    if a super-category has been found: 
11.     until no untested co-adjunctions left in super-category: 
12.      choose a co-adjunction (i.e. another sub-category of 

the super-category) 
13.      try to find episodic schema for co-adjunctive 

category 
14.      if episodic schema is applicable to object: 
15.       end with success 
16.     repeat  
17. repeat (i.e. try again with a new category) 
18. create exploratory goal 
19. end with failure 

Algorithm (99: 286, fig. 4.6) 

1.7.3 Symbol grounding 

As we have seen, the description of an object by a hierarchical schema might enclose 
many modalities, such as visual, acoustical, tactile, consummative, etc. A symbolic 
reference to an object, i.e. an element that may be used to refer to that object, can be 
derived from one of these modalities, or it can just be added. Thus, a symbol standing 
for an object can be understood as a (sub-linked) element of that object. (99: 232)38 In 
implementations, sometimes a different link type (pic and ) is used for the connection 
between word labels and reference.  

A symbol is a schema just like others. It consists of parts that eventually bottom 
out in sensor and effector modalities. (If it is, for instance, a word, it might be made 
up of letters, which in turn may be described by their visual appearances. Of course, a 
symbol does not need to be a word, it can be any object that is suitable to be used to 
refer to something. This something is not the “real” object itself, but the 
representations that describe the object, a relationship that has been expressed by 

                                                 
38 Because Dörner uses word-labels (i.e. a sort of symbols) instead of categories elsewhere (99: 
225), he apparently sur-links objects to their symbols. This would be a contradiction to using 
the symbols as intensional features of the referenced object as described above. However, 
Dörner does not mention typed links in “Bauplan für eine Seele”, and in the succeeding volume 
“Die Mechanik des Seelenwagens”, there is not much discussion about symbols. (In “Bauplan 
für eine Seele”, links only seem to have directions, and depending on the context, Dörner uses 
differing link directions in his illustrations (99: 267).) In implementations, Dörner has avoided 
this dilemma by simply using a different link type (pic and lan, see Künzel 2004) for the 
connection between word labels and reference. 
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Frege (1892): a symbol’s meaning is made up of its “sense” (“Sinn”—the thoughts 
that describe it) and its “reference” (“Bedeutung”—the actual object).  

“The meaningfulness consists on one hand in the evocation of certain thoughts by 
the symbol, on the other hand in that these thoughts in turn usually (but not 
necessarily) refer to factual objects and occurrences in the outside world.” (99: 226) 
In other words, a symbol refers to some kind of mental representation describing an 
entity that can be factual (i.e. constituted from modalities that interface with the 
environment) or imaginary. In semantics, the actual object is usually called ‘referent’ 
and the evoked schema structure would be the ‘reference’ (see figure 1.15). (Ogden 
and Richards 1960, p. 10)  

 
 
Figure 1.15: Referent and reference 

The reference consists of denotation and connotation, the first one being the 
schematic object description itself, whereas the connotation evokes a context that 
depends on the current situation and motives (99: 225-237). Because the referent of 
symbols is something the agent establishes from interaction with its (internal and 
external) environment, symbols are always grounded.39 (See also Dörner, 1996.) 

1.8 Behavior control and action selection 

The Psi theory suggests that all goal-directed actions have their source in a motive 
that is connected to an urge (“Bedarfsindikator”), which in turn signals a 
physiological, cognitive or social demand. This three-fold distinction is of crucial 
importance.  

Actions that are not directed immediately onto a goal are either carried out to 
serve an exploratory goal or to avoid an aversive situation. When a positive goal is 
reached, a demand may be partially or completely fulfilled, which creates a pleasure 
signal that is used for learning (by strengthening the associations of the goal with the 
actions and situations that have led to the fulfillment). In those cases in which a sub-

                                                 
39 Not surprisingly, Dörner rejects Searle‘s Chinese Room argument (Searle 1980, 1984): of 
course, the operator (the person working in the room) does not need to know the meaning of 
Chinese symbols, but the room does. Dörner also argues that Searle seems to (wrongfully) 
believe, that syntax and semantics differed in that the latter would not be formalizable (99: 
240). 
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goal does not yet lead to a consummative act, reaching it may still create a pleasure 
signal via the competence it signals to the agent. After finally reaching a consumptive 
goal, the intermediate goal may receive further reinforcement by a retrogradient 
(backwards in time along the protocol) strengthening of the associations along the 
chain of actions that has lead to the target situation. 

1.8.1 Appetence and aversion 

The actions of the Psi agent are directed and evaluated according to a set of 
“physiological” or “cognitive” urges. These urges stem from demands (e.g. for fuel 
and water) that have been hard-wired into the cognitive model. In order for an urge to 
have an effect on the behavior on the agent, it does not matter whether it really has an 
effect on its (physical or simulated) body, but that it is represented in the proper way 
within the cognitive system. Whenever the agent performs an action or is subjected to 
an event that reduces one of its urges, a signal with a strength that is proportional to 
this reduction is created by the agent’s “pleasure center” (99: 50, 305). The naming of 
the “pleasure” and “displeasure centers” does not imply that the agent experiences 
something like pleasure or displeasure (99: 48). The name refers to the fact that—like 
in humans—their purpose lies in signaling the reflexive evaluation of positive or 
harmful effects according to physiological, cognitive or social demands. 
(Experiencing these signals would require an observation of these signals at certain 
levels of the perceptual system of the agent. 
 

 
 
Figure 1.16: Appetence and aversion 

Please/displeasure signals create or strengthen an association between the urge 
indicator and the action/event (for a possible mechanism, see ‘associator neuron’ 
above). Whenever the respective urge of the agent becomes active in the future, it 
may activate the now connected behavior/episodic schema. If the agent pursues the 
chains of actions/events leading to the situation alleviating the urge, we are 
witnessing goal-oriented behavior (99: 127). 
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Conversely, during events that increase a need (for instance by damaging the 
agent or frustrating one of its cognitive or social urges), the “displeasure center” 
creates a signal that causes an inverse link from the harmful situation to the urge 
indicator. When in future deliberation attempts (for instance, by extrapolating into the 
expectation horizon) the respective situation gets activated, it also activates the urge 
indicator and thus signals an aversion (99: 54, 305). An aversion signal is a predictor 
for aversive situations, and such aversive situations are avoided if possible. This 
could be done by weighting them against possible gains during planning; however, it 
is often better to combine them with distinct behavior strategies to escape the 
aversive situation actively. Dörner suggest their association to explicit flight and fight 
reactions (which in turn are selected between according the estimated competence) 
(99: 55). Furthermore, an aversion signal should raise the action readiness of the 
agent by increasing its activation (see below). 

1.8.2 Motivation  

The urges of the agent stem from a fixed and finite number of hard-wired demands or 
needs (“Bedarf”), implemented as parameters that tend to deviate from a target value. 
Because the agent strives to maintain the target value by pursuing suitable behaviors, 
its activity can be described as an attempt to maintain a dynamic homeostasis. 

Currently, the agent model of the Psi theory suggests three “physiological” 
demands (fuel, water, intactness), two “cognitive” demands (certainty, competence) 
and a social demand (affiliation).40  

These demands are explained below (section 1.8.2.3). 

1.8.2.1 Urges  
It is not always necessary for a low-level demand to be communicated to the 
cognitive system. For instance, if in our example, the pressure in the boiler of the 
steam vehicle drops too low, a reactive feedback loop might kick in first and increase 
the fuel supply to the burner, thus producing more heat and hopefully getting the 
pressure back to normal. Sometimes, this might not work because there is insufficient 
fuel left, or the agent uses up more pressure for its current activities than can 
replenished. In these cases, the agent needs to be informed about the deficiency to be 
able to take action against it. To this end, each demand sensor (“Bedarf”) is coupled 
with a need indicator or urge (“Bedürfnis”).41  

If a demand remains active for a longer period of time (i.e. if there are no 
sufficient automatic countermeasures against it), the urge becomes activated.  

1.8.2.2 Motives 
A motive consists of an urge (that is, a need indicating a demand) and a goal that is 
related to this urge. The goal is a situation schema characterized by an action or event 

                                                 
40 In the actual implementation, there is an additional demand for “nucleotides”, which are a 
kind of bonus item. 
41 ‘Urge’ could also be translated as ‘drive’. The term ‘urge’, however, has already been 
introduced in Masanao Toda’s simulation of the “Fungus eaters” (Toda 1982), and it seems to 
fit well here. 
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that has successfully reduced the urge in the past, and the goal situation tends to be 
the end element of a behavior program (see discussion of protocols above). The 
situations leading to the goal situation—that is, earlier stages in the connected 
occurrence schema or behavior program—might become intermediate goals (99: 307-
308). To turn this sequence into an instance that may (as defined by Madsen, 1974) 
“initiate a behavior, orient it towards a goal and keep it active”, we need to add a 
connection to the pleasure/displeasure system. The result is a motivator (99: 308) and 
consists of: 

- a demand sensor, connected to the pleasure/displeasure system in such a way, that 
an increase in the deviation of the demand from the target value creates a 
displeasure signal, and a decrease results in a pleasure signal. The 
pleasure/displeasure signal should be proportional to the strength of the increment 
or decrement. 

- optionally, a feedback loop that attempts to normalize the demand automatically 
- an urge indicator that becomes active if there is no way of automatically getting 

the demand to its target value. The urge should be proportional to the demand. 
- an associator (part of the pleasure/displeasure system) that creates a connection 

between the urge indicator and an episodic schema/behavior program, specifically 
to the aversive or appetitive goal situation. The strength of the connection should 
be proportional to the pleasure/displeasure signal. Note that usually, an urge gets 
connected with more than one goal situation over time, since there are often many 
ways to satisfy or increase a particular urge. 

1.8.2.3 Demands 
All behavior of Psi agents is directed towards a goal situation, that is characterized by 
a consumptive action (“konsummatorische Endhandlung”) satisfying one of the 
demand of the system. In addition to what the physical (or virtual) embodiment of the 
agent dictates, there are cognitive needs that direct the agents towards exploration and 
the avoidance of needless repetition. 

The demands of the agent should be weighted against each other: a supply of fuel 
is usually more important than exploration. This can simply be achieved by 
multiplying the demands with a factor according to their default priority (99: 396, 
441).42 

Fuel and water  
In Dörner’s “island” simulation, the agent (a little steam engine) runs on fuel derived 
from certain plants and water collected from puddles. The agent always has to 
maintain a supply of these resources to survive. Water and fuel are used whenever the 
agent pursues an action, especially locomotion. Additionally, there are dry areas on 

                                                 
42 If the reward (pleasure signal) associated with a readily available type of event is very high 
without requiring an accordingly challenging behavior (for instance, by having through ‘neuro-
chemical properties’ a direct effect on the pleasure center), the Psi agent might develop an 
“addiction” to the stimulus. If the circumstances leading to the stimulus have damaging side-
effects hindering the agent to satisfy its demands by other activities, the agent might get into a 
vicious circle, because the addiction becomes the exclusive source of pleasure signals. (99: 
428-431) 
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the island that lead to quicker evaporation of stored water, creating a demand increase 
and thus displeasure signals. 

Intactness (“Integrität”, integrity, pain avoidance ) 
Hazards to the agent include things like poisonous plants, rough territory, and 
corrosive sea water. They may damage the body of the agent, creating an increased 
intactness demand and thus lead to displeasure signals. If damaged, the agent may 
look for certain benign herbs that repair it, when consumed. 

Certainty (“Bestimmtheit”, uncertainty reduction) 
To direct agents towards the exploration of unknown objects and affairs, they possess 
a demand specifically for the reduction of uncertainty in their assessment of 
situations, knowledge about objects and processes and in their expectations. (99: 359) 
Because the need for certainty is implemented similar to the physiological urges, the 
agent reacts to uncertainty in a similar way as to pain43 (99: 351) and will display a 
tendency to remove this condition. This is done by a “specific exploration” behavior 
(Berlyne 1974; 99: 355). 

Events leading to an urge for uncertainty reduction are: (99: 357-363) 
1. The HyPercept routine comes up with an unknown object or episode. 
2. For the recognized elements, there is no connection to behavior programs—

the agent has no knowledge what to do with them. 
3. The current situation is “foggy”, i.e. occlusions etc. make it difficult to 

recognize it. 
4. There has been a breach of expectations - some event has turned out 

different from what was anticipated in the expectation horizon. 
5. Over-complexity: the situation changes faster than the perceptual process 

can handle 
6. The expectation horizon is either too short or branches too much. Both 

conditions make predictions difficult. 
In each case, the uncertainty signal should be weighted according to the relation 

of the object of uncertainty to appetence and aversion (in other words, in proportion 
to its importance to the agent) (99: 364). If an uncertainty applies to a goal that is 
difficult to achieve, the signal should be stronger to increase the likelihood of 
exploration in that area (99: 369). 

The demand for certainty may be satisfied by “certainty events” - the opposite of 
uncertainty events: 

1. The complete identification of objects and scenes. 
2. Complete embedding of recognized elements into behavior programs. 
3. Fulfilled expectations—even a pessimist gets a reward if his dreads come 

true. 
4. A long and non-branching expectation horizon. 

Like all urge-satisfying events, certainty events create a pleasure signal and 
reduce the respective demand. Certainty signals are also resulting from the successful 
application of the explorative behavior strategies (99: 369): 

                                                 
43 Dörner even calls uncertainty an ‘informational pain stimulus’ (99: 548). 
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- the acquisition of new sensor schemas, 
- the trial-and-error strategy to learn new behavior programs,  
- the reflection process to recognize episode schemas in a current protocol 
- the categorization process (“What is it and what does it do?”) to organize 

existing knowledge 
Because the agent may anticipate the reward signals from successful uncertainty 

reduction, it can actively look for new uncertainties to explore (“diversive 
exploration”, Berlyne 1974). This leads to an active enhancement of competence (99: 
356).44 

Another area where uncertainty reduction might play a role, is the perception of 
beauty, which is besides being related to appetitive ends (for instance sexuality) 
dependent on finding ordering principles against resistance (99: 373-376). 

Competence (“Kompetenz”, efficiency, control) 
When choosing an action, Psi agents weight the strength of the corresponding urge 
against the chance of success. The measure for the chance of success to satisfy a 
given urge using a known behavior program is called “specific competence”. If the 
agent has no knowledge on how to satisfy an urge, it has to resort to “general 
competence” as an estimate (99: 408). Thus, general competence amounts to 
something like self-confidence of the agent, and it is an urge on its own. (Specific 
competencies are not urges.) 

The specific competence to reach a particular goal with a particular behavior 
program can be estimated by propagating activation through the current position of 
the behavior program and measuring the incoming activation at the goal situation. (It 
is important to inhibit the execution of behaviors here, because otherwise the agent 
will attempt to enact its plan proposals immediately.) (99: 398-405).45 

The general competence of the agent reflects its ability to overcome obstacles, 
which can be recognized as being sources of displeasure signals, and to do that 
efficiently, which is represented by pleasure signals. Thus, the general competence of 
an agent is estimated as a floating average over the pleasure signals and the inverted 
displeasure signals (99: 406-413). Dörner suggests a simple neural circuit that 
approximates the floating average (figure 1.17). (99: 412) 

                                                 
44 Dörner points out, that jokes typically work by uncertainty reduction—throughout the joke, 
uncertainty is built up. By finding an unexpected solution, the hearer experiences a relief and a 
pleasure signal from the certainty event. 
45 It would be more accurate to calculate the Bayesian probability of reaching the related goal. 
The behavior program/episode schema leading to the desired consumptive situation consists of 
a branching tree with the present as root and the goal as one of the leaves. However, 
experiments with humans show that they systematically overestimate or underestimate the 
probability of success when choosing an action. Furthermore, according to the way link 
weights are set, the weights do not only encode the frequencies of state transitions (which 
would correspond to the probabilities of getting from a given situation to another one) but are 
also influenced by the intervals of observation, because links are subject to a decay over time. 
(99: 397-401)  
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Figure 1.17: A neural circuit for identifying a floating average (99: 412) 

Because the general competence is used as a heuristics on how well the agent 
performs in unknown situations, it is also referred to as heuristic competence. 

As in the case of uncertainty, the agent learns to anticipate the pleasure signals 
resulting from satisfying the competence urge. A main source of competence is the 
reduction of uncertainty. As a result, the agent actively aims for problems that allow 
to gain competence, but avoids overly demanding situations to escape the frustration 
of its competence urge (99: 418-423). Ideally, this leads the agent into an 
environment of medium difficulty (measured by its current abilities to overcome 
obstacles).46  

But it also may cause the agent to flee from a frustrating task into anything 
providing a little bit of competence satisfaction, the human equivalent being a student 
fleeing from a difficult assignment into household work that would normally be 
ignored (99: 423-428). “If humans (or Psi agents) get into situations that are 
‘competence-devouring’, areas for reestablishing competence gain much importance” 
(99: 424), and there is a danger of escapist over-specialization: Thus, the Psi theory 
models a mechanism explaining procrastination! 

Affiliation (“okayness”, legitimacy) 
Because the explorative and physiological desires of Psi agents are not sufficient to 
make them interested in each other, Dörner has vested in them a demand for positive 
social signals, so-called ‘legitimacy signals’. With a legitimacy signal (or l-signal for 
short), agents may signal each other “okayness” with regard to the social group 

                                                 
46 When extrapolating the acquired behavior programs and episode schemas according to the 
occurring situations, we get a state space (with actions and events as transitions) that Dörner 
calls “Wirkwelt”  (world of effects) and “Wertwelt” (world of values). The latter consists of the 
aversive, appetitive or neutral evaluations of situations (states), whereas the first consists of the 
active or passive known transitions between these states. Active transitions are effected by the 
agent, while passive transitions are due to properties of the environment (including other 
agents). An agent that considers himself in a world with much more passive than active 
transitions will tend to be resignative. The agent’s desire to acquire competence (i.e. 
abilities/control) can be interpreted as an ongoing attempt to increase the correspondence 
between the active world of effects and the world of values, so that the agent can actively 
obtain everything it needs and avoid everything threatening. Success in the quest for 
competence leads to the equivalent of a sense of security (99: 244-252). 
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(Boulding 1978, p. 196). Legitimacy signals are an expression of the sender’s belief 
in the social acceptability of the receiver (99: 327). 

Psi agents have a demand for l-signals that needs frequent replenishment and thus 
amounts to an urge to affiliate with other agents (99: 329). Agents can send l-signals 
(but there is only a limited amount to spend) (99: 349) and could thus reward each 
other for successful cooperation. 

Dörner hints at the following enhancements to this mechanism: 
- anti-l-signals. Just as legitimacy signals may reward an agent for something, an 

anti-l-signal (which basically amounts to a frown) ‘punishes’ an agent by 
depleting its legitimacy reservoir (99: 336). 

- internal l-signals. An agent may receive legitimacy signals internally just by 
acting in a socially acceptable way - without the need of other agents giving these 
signals. (Dörner notes that these internal l-signals amount to something like 
‘honor’). 

- supplicative signals. A terminus introduced by Norbert Bischof, these are ‘pleas 
for help’, i.e. promises to reward a cooperative action with l-signals or likewise 
cooperation in the future. Supplicative signals work like a specific kind of anti-l-
signals, because they increase the legitimacy urge of the addressee when not 
answered. At the same time, they lead to (external and internal) l-signals when 
help is given. (99: 319-323). 

- adaptive desire for l-signals. The desire for l-signals varies from person to person 
and apparently depends to a significant extend on childhood experiences. There 
could be a similar priming mechanism for Psi agents. 

- legitimacy signals from other sources. In social interchanges, there are many other 
possible sources of legitimacy signals, for instance uniformity, certain symbols 
etc. joint action (especially at mass events) etc. This can be achieved by activating 
a specific association mechanism during trigger events (for instance mass events, 
joint activity, certain family related activities) and thus relating elements of these 
situations to the replenishment of the affiliation demand (99: 341-343). L-Signals 
could thus be received by the sight of an arbitrary feature. By establishing group 
specific l-signals, an adherence to a group could be achieved (99: 334-335). 

- by making the receivable amount of l-signals dependent of the priming towards 
particular other agents, Psi agents might be induced to display ‘jealous’ behavior 
(99: 349). 

 
Even though the affiliation model is still fragmentary, it might provide a good handle 
on Psi agents during experiments. The experimenter can attempt to induce the agents 
to actions simply by the prospect of a smile or frown, which is sometimes a good 
alternative to a more solid reward or punishment. 

Current and yet unpublished work by Dörner’s group focuses on simulations 
using supplicative signals and l-signals to form stable groups of individuals in a 
multi-agent system. Here, individual agents form coalitions increasing their success 
in a competitive environment by deciding to react towards supplicative signals with 
support, neglect or even aggression. 
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1.8.2.4 Motive selection 
If a motive becomes active, it is not always selected immediately; sometimes it will 
not be selected at all, because it conflicts with a stronger motive or the chances of 
success when pursuing the motive are too low. In the terminology of Belief-Desire-
Intention agents (Bratman 1987), motives amount to desires, selected motives give 
rise to goals and thus are intentions. Active motives can be selected at any time, for 
instance, an agent seeking fuel could satisfy a weaker urge for water on the way, just 
because the water is readily available, and thus, the active motives, together with their 
related goals, behavior programs and so on, are called intention memory (99: 449). 
The selection of a motive takes place according to a value by success probability 
principle, where the value of a motive is given by its importance (indicated by the 
respective urge), and the success probability depends on the competence of the agent 
to reach the particular goal (99: 442). 

In some cases, the agent may not know a way to reach a goal (i.e. it has no 
epistemic competence related to that goal). If the agent performs well in general, that 
is, it has a high general competence, it should still consider selecting the related 
motive. The general (heuristic) competence should also add something to the 
probability of success when a possible way to reach the goal is known. Therefore, the 
chance to reach a particular goal might be estimated using the sum of the general 
competence and the epistemic competence for that goal (99: 445). 

Thus, the motive strength to satisfy a demand d is calculated as urged  · 
(generalCompetence + competenced), i.e. the product of the strength of the urge and 
the combined competence. 

For a more sophisticated selection of goals that have to be fulfilled at a certain 
point in time (because there is a limited window of opportunity), the motive strength 
should be enhanced with a third factor: urgency. The rationale behind urgency lies in 
the aversive goal created by the anticipated failure of meeting the deadline. The 
introduction of such an aversive goal benefits strategies that reach the actual goal in a 
timely fashion. (99: 448)  

The urgency of a motive related to a time limit could be estimated by dividing the 
time needed through the time left, and the motive strength for a motive with a 
deadline can be calculated using (urged + urgencyd) · (generalCompetence + 
competenced), i.e. as the combined urgency multiplied with the combined 
competence (99: 444). 

The time the agent has left to reach the goal can be inferred from episodic 
schemas stored in the agent’s current expectation horizon, while the necessary time to 
finish the goal oriented behavior can be determined from the behavior program. 
Obviously, these estimates require a detailed anticipation of things to come, which is 
difficult to obtain without language. Not surprisingly, animals do not seem to possess 
a sense of urgency (99: 447). 
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Figure 1.18: The structure of a motive 

Because only one motive is selected for the execution of its related behavior program, 
there is a competition between motives—and the winner takes it all. A neural 
mechanism to identify the strongest motive (99: 450-453) might work as follows: For 
each motive, there is an input indicating its current strength, calculated as explained 
above, and an output that determines if the motive is selected or not. The strongest 
motive is found by inhibiting all inputs with a signal of the same strength. The value 
of the inhibition is then increased in small steps, as long as more than one input is 
active. Eventually, only the strongest input signal survives. In the case that the 
strongest motives have similar strengths, it might be possible to miss the difference 
and end with no active input at all, in which case the process is repeated with a 
smaller increment. (This works provided that there are no two motives of exactly the 
same strength, which usually does not happen and could be avoided altogether by 
adding a little bit of noise). The input value of the remaining motive is then amplified 
and propagated to the output to show that the motive has been selected. This method 
is relatively fast for big differences between motive strengths and takes longer to 
resolve conflicts between motives of similar strength. 

The motive selection mechanism is periodically repeated (99: 452) to reflect 
changes in the environment and the internal states of the agent. To avoid oscillations 
between motives, the switching between motives is taxed with an additional cost: the 
selection threshold (99: 457-473). The selection threshold is a bonus that is added to 
the strength of the currently selected motive. Technically, to avoid that a motive with 
zero strength keeps on being executed, the threshold value is subtracted from all 
other motives. This amounts to a lateral inhibition by the currently selected motive, 
applied to its more unlucky siblings (99: 467, 470). The value of the selection 
threshold can be varied according to circumstances, rendering the agent 
‘opportunistic’ or ‘stubborn’. The selection threshold is a modulator that can be 
considered part of the emotional configuration of the agent. (99: 473). By letting the 
activation of motives spread into the connected goals, behavior programs and 
episodic schemas, it is possible to pre-activate a suitable context for perception and 
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planning (99: 474-475). If the inhibition supplied by the selection threshold is 
allowed to spread too, it might suppress memory content not related to the pursuit of 
the currently selected motive and thus focus the agent on its current task (99: 478). 

1.8.3 Intentions 

As explained above, intentions amount to selected motives that are combined with a 
way to achieve the desired outcome. Within the Psi theory, an intention refers to the 
set of representations that initiates, controls and structures the execution of an action. 
(Thus, it is not required that an intention be conscious, that it is directed onto an 
object etc.—here, intentions are simply those things that make actions happen.) 

Intentions may form intention hierarchies (Strohschneider 1990, p. 62), i.e. to 
reach a goal it might be necessary to establish sub-goals and pursue these. 

An intention can be seen as a set of the following components: 
- the desired goal state sω 
- the current state of the intention, which marks the actual start state sα 
- the history of the intention, which is a protocol of those actions (external and 

internal) and events that took place in the context of the intention execution; the 
current state sα marks the end of this protocol; this is needed for learning 

- the plan (a sequence of triplets leading from sα to sω) 
- the reason behind the goal state sω (instrumentality, given by connections to 

higher level goals or directly to urge indicators) 
- the time tω, where the goal has to be reached by (which determines a deadline and 

thus the urgency of the intention) 
- the time tterminus that it will probably take to reach the goal 
- the importance i of the intention (depending on the strength of the motive 

associated with the goal state sω) 
- the estimated competency c to fulfil the intention (which depends on the 

probability of reaching the goal) 
(Dörner 1988, p. 268, Detje 1996, pp.71) 

Intentions are not necessarily a combined data structure; they are just those 
representations that are used during the pursuit of a goal. 

1.8.4 Action 

The Rasmussen ladder (named after Danish psychologist Jens Rasmussen, 1983) 
describes the organization of action as a movement between the stages of skill-based 
behavior, rule-based behavior and knowledge-based behavior.   

- If a given task amounts to a trained routine, an automatism or skill is activated; it 
can usually be executed without conscious attention and deliberative control.  

- If there is no automatism available, a course of action might be derived from 
rules; before a known set of strategies can be applied, the situation has to be 
analyzed and the strategies have to be adapted. 

- In those cases where the known strategies are not applicable, a way of combining 
the available manipulations (operators) into reaching a given goal has to be 
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explored at first. This stage usually requires a recomposition of behaviors, i.e. a 
planning process. 
In the Psi theory, the Rasmussen ladder receives a slight modification: the first 

two stages are being regarded as finding (perhaps adapting) an automatism, the third 
is planning (99: 508-512). (This distinction is somewhat similar to the one by 
Rosenbloom and Newell, 1986, into algorithmic/knowledge-intensive behavior and 
search/exploration behavior.) 

Dörner adds a third stage to automatism and planning: exploration. Currently, the 
explorative behavior of Psi agents amounts to an experimentation behavior, called 
“What can be done”. The main part of “What can be done” is a trial-and-error 
strategy, which starts at those objects that are most accessible and least explored. (It 
might also be possible to learn by observation, but this is not only less goal-oriented 
but also requires the ability to infer from the actions of other agents onto own 
behavior.) 

For problem solving, Psi agents first attempt to find an applicable automatism. If 
this fails, they switch to planning, and as a last resort, they perform actions randomly 
to learn more about their environment. 

1.8.4.1 Automatisms 
An automatism consists of an already well established sequence of actions, possibly 
interleaved with perception to allow for (automatic) slight adjustments. Automatisms 
may be expressed by behavior programs and amount to chained reflexes 
(“Kettenreflex”) (99: 95). Dörner estimates that more than 90% of human behavior is 
made up of automatisms (99: 94). Because they do not require attention during the 
course of execution, they might run in parallel to each other and to more attention 
demanding processes (99: 483)—as long as no conflicts need to be resolved or 
unexpected things happen. 

Automatisms can be found by looking (in the given network of knowledge 
consisting of interrelated behavior programs and episodic schemas) for a connection 
between the current situation and a goal situation (indicated by an urge as described 
in the previous section) (99: 479-484). If we activate the current situation and let 
activation spread along the por-links, we may check if the activation reaches a goal 
situation that is related to current urges, and then use the path of the activation as a 
behavior program (99: 482; 02: 93). 

1.8.4.2 Simple Planning 
For many problems, a behavior program or episodic schema connecting the current 
situation and the goal will not be known, and the agent will have to construct a new 
plan. (99: 485-506) A plan is a sequence of actions that act as transitions between 
situational states, leading from the start situation to a goal situation, and to find it, the 
agent has to traverse the known situation space. Because a complete search is usually 
infeasible (99: 490-492), the agent has to narrow down the situations and operations 
that are considered for inclusion in the plan. Such a heuristics might be decomposed 
into a number of sub-problems (99: 487): 

- the selection problem: which actions should be chosen (i.e. which transitions 
should be considered)? For instance, the agent could decide to minimize the 
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distance to the goal, to maximize the distance from the start, to select the most 
well-known actions or to maximize the overall likelihood of a behavior sequence 
to succeed etc. 

- the break criterion: when should the current attempt to find a path be abandoned? 
- the continuation problem: at which position and with which transition should the 

search be continued after a abandoning a previous attempt? 
- the direction problem: should the search begin at the start, the goal, at prominent 

situations that could possibly become a link between start and goal or at a 
combination of these? For instance, if the goal is well known, the agent might opt 
for a backward search (99: 504) or combine forward search and backward search. 
In many cases, however, there are many possible goals to satisfy a given demand 
(for example, many sources of food), and backward search is not applicable. (99: 
493) 
As an example strategy (a certain solution of the above problems), a hill-climbing 

algorithm is described: (99: 496) 

“Hill Climbing Planner” 
 
1. choose current situation as start 
2. until start = goal or behavior program from the current start to the goal 

is known: 
3. if there is no list of operators for current start : 
4.   create an operator-list containing all operators applicable to 

start  
5.   remove all operators that have been already been tested on start 
6. if operator-list is empty:  
7.   if there is no preceding, at least partially untested situation to 

start: 
8.    end with failure 
9.   else (i.e. there is a known preceding situation): 
10.    make preceding situation the new start (i.e. backtrack) 
11. else (i.e. operator-list is not empty): 
12.   apply all operators in the operator-list, on start, store result-

list 
13.   choose element of the result-list with the smallest distance to the 

goal 
14.   if the distance is smaller than the distance from start to goal: 
15.    make the element the new start situation; mark operator as 

tested 
16.   else: 
17.    mark all elements of the result-list of start as tested; empty 

result-list 
18. repeat (until start = goal or behavior program from start to goal is 

known) 
19. end with success 

Algorithm for ‘hill climbing’ (99: 496, fig. 6.10) 

The hill-climbing algorithm attempts at each step to reduce the distance from the 
given position to the goal as much as possible (a distance measure could be spatial as 
in a path-finding task, but it could be derived from the number of features shared by 
two situations (99: 500), possibly corrected by weights on the features according the 
given motivational context (99: 503). If it arrives at a situation that presents a local 
optimum where all possible transitions increase the distance to the goal again, it 
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abandons that situation and returns to a previous situation with untested transitions. If 
a problem requires to increase the distance to the goal temporarily (as for instance the 
“Rubic’s cube” problem), then a solution can not be found with the given algorithm. 
In other words: the hill-climbing algorithm is not guaranteed to find a solution, even 
if one exists. Thus, if the agent has to monitor the strategy, and if it yields no result, it 
should disable it in favor of a different approach (99: 499). Of course, hill-climbing is 
not the only problem solving strategy applied by humans. It is just an example of a 
possible method; human subjects constantly reprogram such algorithms and even the 
meta-strategies used in such reprogramming (99: 499). 

Alternative strategies in planning consist in the extensive use of macros (99: 493), 
that is, of hierarchical behavior programs that can be recombined. The construction of 
thus macros can be facilitated by using a language to structure the behavior programs 
and their situation objects into categories. Some problem solving strategies that also 
make use of language, like GPS and “Araskam”, will be discussed in section 1.10.6. 

1.8.4.3  “What can be done?” (“Was kann man tun?”)— the Trial-and-
error strategy 

If no automatism or plan can be found, because the knowledge or planning strategies 
do not yield a result in a reasonable time, the agent will have to fall back into an 
explorative behavior that is called “What can be done?”. The goal of this strategy is 
the addition of new branches to already known behaviors, which leads to more 
general behavior programs (99: 129). 

One way of doing that consists in examining objects in the vicinity of the agent in 
the order of their distance and check to which degree they have been explored (i.e. if 
it is known how to recognize them and how they respond to the available operators). 
Unknown objects are then subjected to trial-and-error behavior. If the objects of 
interest are explored, the agent performs locomotive actions that preferably bring him 
into the vicinity of further unknown objects (02: 188, 101). “What can be done” 
extends the agent’s knowledge, especially early in its life, but in a hazardous 
environment, it might prove dangerous, because the random exploration of terrain 
and objects can lead to accidents.47  

1.8.5 Modulators 

A modulator is a parameter that affects how cognitive processes are executed (99: 
535). Dörner’s Psi theory currently specifies four modulators: The agent’s activation 
or arousal (which resembles the ascending reticular activation system in humans) 
determines the action-readiness of an agent. The perceptual and memory processes 
are influenced by the agent’s resolution level. The selection threshold determines 
how easily the agent switches between conflicting intentions, and the sampling rate 
or securing threshold controls the frequency of reflective and orientation behaviors. 
The values of the modulators of an agent at a given time define its cognitive 
configuration, a setup that may be—together with the current settings of the 

                                                 
47 If an agent is put into a dangerous world without pre-defined knowledge, it should probably 
be taught and protected. 
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competence regulation—interpreted as an emotional state (99: 561). Interestingly, the 
modulation system also picks up some of the notorious side-effects commonly 
associated with emotion. For instance, while a failure to accomplish an urgent task 
should increase the activation of the agent to speed up its actions and decisions, the 
consequently lowered resolution level (which is somewhat inversely dependent on the 
activation) may cause it to fail in achieving its goal, leading to even more urgency 
and activation.  

Another scenario might be characterized by an important goal, but with a high 
uncertainty that needs resolving, which at the same time is accompanied by a low 
competence estimate. This leads to a low likelihood estimate for attaining the 
explorative goal, causing the agent to choose a different, substitutive behavior that is 
likely to give it a competence reward, typically something the agent has explored 
very well already. But because the agent avoids following strategies that could lead to 
the original, more pressing goal, its competence level continues to plummet, making 
future attempts even more improbable. Dörner gives more examples and notes: “We 
have introduced the modulation system to make the behavior regulation of Psi more 
efficient, and now we must realize that its behavior—under certain circumstances—
does not improve at all, but rather that Psi gets into vicious circles and in states that, 
would we witness them in humans—would call haste, stress, anger, rage, panic, 
dogmatism and resignation.” (99: 549) 

Individual agents may differ in their “personalities” because of different settings 
for the defaults and ranges of modulators (99: 244, 753), which may also depend on 
the experiences of the respective agent during its lifetime. 

1.8.5.1 Activation/Arousal 
The activation modulator, sometimes also referred to as arousal (02: 217) is a control 
parameter for the agent’s readiness for action. The higher the activation, the more 
pressing it has become to react to the situation at hand, and faster decisions are 
sought. Thus, a high activation will tend to inhibit the spread of activation in the 
perceptual and memory processes—and consequently, fewer details and less 
schematic depth is retrieved. The activation is inverse to the resolution level, for 
instance 

 1resolutionLevel activation= −  (1.9) 
 

Obviously, this relationship is not linear: a large change of activation within the lower 
range might have only a small influence on the resolution level (99: 536).  

The action readiness of an agent is necessarily inverse to its resolution level: fast 
action leads to less time for deliberation and perception, so the depth and width of 
retrieval, planning and perception are more limited. 

1.8.5.2 Selection threshold 
When an agent has conflicting goals, the varying strengths of the respective motives 
may sometimes lead to an oscillation in its behaviors: plans can be abandoned 
halfway to pursue other goals which have just become a little more pressing. This is a 
potential source for problems, because the preparation and initial steps of the 
interrupted behavior might have been wasted. Just imagine an agent that is 
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undertaking a long journey to a water-source, only to abandon its goal a few steps 
short of reaching it, because it just started to feel hungry. Therefore, it makes sense to 
display a certain degree of determination in following a motive, and this is delivered 
by the selection threshold parameter (99: 457-473).  

The selection threshold is a bias that is added to the strength of the currently 
selected motive. Because it makes it harder to switch motives, oscillations can be 
avoided; the details of its implementation are explained in the context of motive 
selection (1.8.2).  

Note that a high selection threshold leads to “stubbornness”, a low one to 
opportunism/flexibility, or even motive fluttering. Sometimes, the selection threshold 
is also called “focus” or “concentration”. 

1.8.5.3 Resolution level 
Perceptual processes and detailed memory retrieval can take up a lot of processing 
time. In a dynamical environment, this time should be adapted, depending on how 
urgently the agent needs to arrive at a decision, and this is achieved by modulating 
the degree of resolution at which these processes take place. The resolution level 
parameter affects HyPercept; a high setting leads to ignorance towards smaller details 
(99: 148). 

Experiments have shown that a (stress induced) lower resolution level may indeed 
lead to increased performance in problem solving situations (99: 570): in a 
simulation, where subjects had to extinguish bush fires, the reduced resolution lead to 
improvements due to a better overview (Dörner and Pfeiffer 1991).  

The resolution level might also have its hand in some creative processes. Because 
a low resolution level tends to miss differences, it can lead to over-inclusive thinking, 
which may result in the formation of new hypotheses (99: 571). 

1.8.5.4 Sampling rate/securing behavior 
While Psi agents pursue their plans, they perceive the world very much in terms of 
their expectations. In a dynamic environment, however, there are frequently changes 
and occurrences that have not been brought forth by an action of the agent or that are 
unexpected side effects. To react to these changes, the agent should look for the 
unexpected; it should regularly interrupt its routines and perform an orientation 
behavior. This orientation is implemented as a series of behavior programs and 
extends from low level perceptual routines to the activation of the Reflection 
procedure to identify possible alternative interpretations of events in terms of 
episodic schemas. (See algorithm.)  
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 “Securing behavior” 
 
1. update situation image 
2. check expectation horizon 
3. if something unexpected has been found: 
4. create exploratory goal 
5. ... exploration (takes place elsewhere) 
6. check perceptual background 
7. if new events have occurred: 
8. create exploratory goal 
9. ... exploration (takes place elsewhere) 
10. perform Reflection; look for new ongoing episodes;  

set up new expectation horizon 

Algorithm for securing behavior (99: 521, fig. 6.14) 

Unknown objects receive attention by cuing them into a list of items that warrant 
further examination. (It will be necessary to identify them by their spatial location or 
their perceptual mode.) Then, the activation of the agent is increased, which raises its 
action readiness and increases the strength of the external explorative motive at the 
cost of deliberation. (The increased activation amounts to something like the 
ascending reticular activation system in humans.) (99: 212-213) 

 
The frequency of the securing behavior is inversely determined by the modulator 
securing threshold (“Sicherungsrate” or “Schwellwert des Sicherungsverhaltens”), 
(99: 518-519), sometimes also called sampling rate (“Abtastrate”) (Dörner, Hamm, 
Hille 1996).  The sampling rate determines the threshold, at which the securing 
behavior becomes active, and it is proportional to the strength of the current motive, 
i.e. in the face of urgency, there will be less orientation. Furthermore, the value of the 
securing threshold depends on the uncertainty in the current context: an undetermined 
environment requires more orientation. The triggering of the orientation behavior can 
be implemented by using a self-exciting loop that builds up activation over time, until 
it exceeds the securing threshold. Then, the loop is reset and the securing behavior 
performed. 

1.8.5.5 The dynamics of modulation 
The attainment of goals signals efficiency to the agent, while failure is interpreted as 
an inefficiency signal. The combination of these signals (as a kind of floating 
average) determines the competence of the agent, and a low competence will increase 
the agent’s urge to seek efficiency signals. In case of conflict, low competence will 
increase the likelihood of flight (because the agent estimates its chances of coping 
with a dangerous event lower), high competence will steer the agent towards 
exploration instead. 

Likewise, if the agent’s expectations of the outcome of its actions or the behavior 
of the environment are confirmed, its certainty is increased, while violations of 
expectations reduce it. If many such violations are encountered, the urge to reduce 
uncertainty increases. This urge will increase the agent’s tendency towards specific 
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exploration and the securing behavior (looking for unknown and unexpected 
elements).  

High levels of urges (either from the competence or certainty urge, or from any of 
the other demands of the agent) will increase the activation. A high activation leads to 
increased action readiness (including the related physiological activity). It also 
increases the “stubbornness” of the agent to increase its commitment to the current 
task, and in turn it reduces the resolution level, which speeds up the cognitive 
processes at the cost of details. 

 

 
 
Figure 1.19:  Relationships between modulators (99: 538) 

The modulation model of emotion has been evaluated in a doctoral thesis by Katrin 
Hille (1997). Hille built an abstraction of an environment consisting of a city with gas 
stations, wells, passages that are open only at certain intervals, and roadblocks. Some 
streets in the city may damage the agent because of their poor condition, and there are 
even areas where falling bricks pose a looming threat. While the street layout remains 
constant, the additional conditions may change over time and are occasionally 
announced by road signs. Thus, the agent gains an advantage, if it adapts to the 
changes in the environment and learns which signals predict these changes.  
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Figure 1.20:  Environment for Psi agents: city world (99: 552) 

The agent behavior was modulated by parameters for selection threshold, sampling 
rate, activation and resolution level; it could be shown that agents with a working 
modulation system where far more successful in satisfying their demands over time 
than agents with random modulation or a set of values that was fixed at high, medium 
or low levels. (Apparently though, there has been no experiment using a fixed, but 
optimized set of modulation parameters.) (99: 551-557)  

1.9 Emotion 

The notion of emotion in psychology is extremely heterogeneous. Emotions are for 
instance described as instincts, as the inner perspective of motivations, the result of 
stimulus checks, models of behavior, part of a continuum of mental entities (i.e. there 
are degrees in how much an emotion is an emotion), coordinates in a three 
dimensional space (with pleasure-displeasure, arousal-calm and tension-relief as 
dimensions) etc. (Osgood 1957; Traxel, Heide 1961; Izard 1981; Ortony, Clore, 
Collins 1988; Ekman, Friesen, Ellsworth 1972; Plutchik 1994). Dörner rejects this 
terminological and conceptual heterogeneity (without necessarily denying the validity 
of these approaches) and suggests taking a design stance instead: to discuss how a 
system had to be built that shows the behavior and the properties we want it to show 
in the context of emotion (99: 19-21). 
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1.9.1 Emotion as modulation 

In the context of the Psi theory, we are looking primarily at emotion as the 
modulation of behaviors and inner processes (99: 561). Dörner’s emotion theory is 
centered around the modulation of behavior; the cognitive and external behaviors of 
the system are seen as being accented by the set of modulator parameters. An 
emotional state is determined by a certain configuration of these parameters. 
Emotions are not exact points in the space of behavior modulation, they are ranges.48 

Because there is always a certain configuration, it can be said that while the 
different types of emotion vary in strength, the system is always in an emotional state. 
The regulation which leads to an emotional state is caused by environmental and 
internal circumstances; emotion is an adaptation that makes use of limited 
physiological resources in the face of different environmental and internal demands.49  

For Dörner the feeling aspect of emotions is most important (99: 558-559). Of 
course, we would not say in every situation that we perceive a feeling, but this is due 
to the fact that typically only the extreme settings and changes of emotional 
configurations are remarkable enough to be explicitly perceived and conceptualized. 
While emotions “color” action and thought, they can also be unconscious; in current 
Psi agents they are always unconscious, because they are not reflected (99: 563).  

Note that a feeling is not just a modulation, but a modulation of something, of a 
certain content, which determines the direction of an affect. Thus, emotions may be 
understood as bound to one or more motives (99: 562). 

1.9.2 Emotion and motivation 

While emotions are not a class of motives, thoughts or memories, they are also not 
separate from these, they are not independent modules in the cognitive system. 
Emotions are an aspect of thoughts, perceptions, memories, motives, decision 
processes (99: 564-565). As Dörner puts it: “In Psi, emotion relates to perception, 
planning, action etc. like colors and shapes relate to the objects. An object always 
has a certain color and a certain shape, otherwise it would not be an object. 

All psychological processes are modulated in the Psis; they are always executed 
with a certain securing threshold (sampling rate of environmental changes), a certain 

                                                 
48 Dörner’s emotional model might have its roots in the three-dimensional modulator model of 
Wilhelm Wundt (1910). Here, we have the dimensions of pleasure/displeasure, 
tension/relaxation and arousal/calm. Since an emotional configuration is (roughly) made up of 
pleasure/displeasure (which are separate dimensions), activation/resolution level, certainty, 
competence (coping potential) and selection threshold, the model is actually quite distinct. 
There are also similarities, however, to the three-dimensional model of Traxel and Heide 
(Traxel 1960, Traxel, Heide 1965), which replaces Wundt’s tension/relaxation by 
submission/dominance (this dimension has a similar effect as the competence/certainty 
parameters). 
49 The role of emotion in communication is not denied by Dörner, it just is not central to the 
theory. Also, emotions here mean primary/basic emotions; complex social emotions like 
jealousy, envy, triumph are basic emotional settings which have the mental representation of a 
social relationship as the object of an affect. However, this is not discussed here. 
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degree of focus (“Konzentrationsgrad”) and a certain activation. Emotions are the 
specific form of the psychological processes. 

It is not possible to remove an object without also removing its color and shape. 
In the same way, emotions do not remain if action, planning, remembering, 
perception are taken away.” (99: 565) 

It is important to make a clear distinction between emotion and motivation: the 
motivational system determines what has to be done, emotions influence how it is 
being done (Hille 1997). An example for an emotion might be fear, which determines 
a disposition for certain behavior, a level of activation, an influence on planning, 
memory and perception via the resolution level, the securing threshold and the 
selection threshold, and which modulates numerous physiological parameters to 
facilitate flight etc. Emotions like fear are very dissimilar from motivational urges 
like hunger (which specifies an open or definite consumptive goal, accompanied with 
a displeasure signal). 

1.9.3 Emotional phenomena that are modeled by the P si theory 

The Psi theory implicitly covers a broad scope of emotional phenomena: affects 
(short lived, usually strong emotional episodes which are directed upon an object), 
moods (extended regulatory settings of the cognitive system), behavior dispositions 
and perturbances (emotional episodes that stem from an unproductive conflict 
between different cognitive behaviors). There are several publications of Dörner and 
his group that discuss examples of emotion and the theory itself, where various 
aspects and examples of emotions are mentioned in considerable detail. If we 
conceptualize a particular emotion, we are usually referring to certain ranges of 
modulator settings and the involvement of different cognitive sub-systems, for 
example:50 

- Anxiety (negative) and pleasant anticipation are states of expectation with an 
often unclear and complex background, which might be causing pleasure or 
displeasure (depending on the competence level, which marks the coping 
potential) (99: 196-198). 

- Surprise, startling, relief and disappointment are all related to evaluations of 
matches of the anticipated events in the agent’s expectation horizon to actual 
events. A surprise is the reaction to a motivational relevant event that was 
unexpected. A startle is an even stronger reaction to a sudden unexpected change, 
which strongly increases the activation of the agent and triggers an orientation 
behavior. Relief is the reaction to an anticipated aversive event failing to 
materialize, and disappointment is the state that is evoked by missing an expected 
positive event. 

- Many social emotions are related to empathy and legitimity behavior (i.e. affects 
that are directed onto the agent’s need for external and internal legitimity signals). 

                                                 
50 This is not a complete list, emotions that are not described here do not necessarily 
correspond to limitations in the theory—it is just a short reference to what has been covered 
in Dörner’s books. 
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These are, together with supplicative signals, pre-requisites for behavior that has 
social interaction as its goal (Dörner et al. 2001). 

- Negative affect behavior like anger (99: 560) can be explained as the prevalence 
of displeasure signals together with a specific modulation (here: a high activation, 
which is accompanied by a low resolution level).51 Anger is characterized by the 
failure to attain a goal in the face of an obstacle. The low resolution level during 
an episode of anger causes a diminished problem solving capability. The higher 
urgency caused by the frustrated motive increases the activation, which in turn 
leads to more impulsive action and narrowed observation. (99: 561) 

- A low resolution level is also typical for fear (99: 178). Fear is triggered by the 
anticipation of aversive events combined with high uncertainty and is related to a 
low securing threshold: a fearful subject tends to perform frequent orientation 
behavior because of the high uncertainty (99: 524). This constant re-exploration 
often leads to discovery of even more uncertainty. For instance, if the episode of 
fear is triggered in a dark place, the attempt to reduce uncertainty by increasing 
the orientation behavior might lead to further insecurity, and the resulting vicious 
circle causes an emotional perturbance. Fear is also characterized by focusing due 
to a high value of the selection threshold (99: 478), which also increases the 
inflexibility of the agent’s behavior (99: 473). Fear/anxiety episodes decrease the 
competence of the agent and increase its tendency to flee the situation; if the 
escape is successful, the subject tends to avoid these circumstances in the future 
(99: 562). 

- An explanation for hope might be given as follows: in the face of a bad situation, 
displeasure etc., an event connected to a possible betterment is perceived. All 
attention is focused on the corresponding thread in the expectation horizon and 
the agent attempts to perform actions that lead to the desired outcome. 

- Grief is triggered if something very important (strongly associated to fulfillment 
of a demand), disappears permanently from expectation horizon of the subject 
(99: 805). 

1.10 Language and Future Avenues 

The Psi theory attempts to be a complete constructionist model of human mental 
abilities, and naturally, the territory covered by it is limited. Current Psi agents 
successfully display numerous problem solving abilities, autonomous learning, 
hierarchical perceptual processing and even emotional modulation, but they lack 
(among many other things) self-reflection, meta-management abilities, flexible 

                                                 
51 Usually, Dörner’s model mainly discusses the affect aspect of emotions like anger and fear, 
but the object of these emotions is a crucial component: undirected anger is typically 
distinguished as rage, and undirected fear as angst. That is, the conceptualization of such 
emotions should not only consist of modulation/affect, but also of a certain associated 
cognitive content, which is the object of this affect. Also, a complete description of anger and 
rage may perhaps require a model of sanctioning behavior. 



 
 

 
 
 

 67 

planning. So far, the Psi agent does nothing—it just happens in the Psi agent (99: 
483).  

Many current deficiencies of the agent may be overcome by equipping it with 
specific behaviors. Reflective behavior, for instance, would greatly improve if the 
agent would possess a mechanism to evaluate its protocols (which is part of the 
theory, but not of the current implementation). But if we pose the question for self-
reflection at a higher cognitive level (i.e. steps towards the constitution of a personal 
subject), we have to go beyond such meta-management. Meta-management is not 
self-reflection, because it does not require the agent to have a concept of a self. 
Dörner’s answer to this question, as well to the demands of more sophisticated 
planning, creativity, mental simulation is invariably: language. Self-reflection is not 
identical to the language capability, of course, but language is a tool to form and 
maintain the necessary conceptual structures within the cognitive apparatus to 
facilitate self-reflection. Thus, language fulfills two tasks for the cognitive system: 
first of all, it organizes its mental representations by supplying handles on concepts, 
aiding structuring and providing a set of specific thinking and retrieval strategies. On 
the other hand, language allows communication and cooperative concept formation 
with other agents. 

Dörner’s ideas on language are still somewhat in their formative stages, despite 
some thesis projects which have been undertaken in his group (Künzel 2004, 
Hämmer 2003), they are much more preliminary than for instance the notions of 
emotion and perception. Even though Dörner warns that this topic is in need of a 
much more thorough discussion (99: 804, 814) and quite some way from maturity, 
his ideas are still very instructive and interesting. I am not going to cover Dörner’s 
language concepts in full here, but I will try to give a brief overview and introduction. 

1.10.1 Perceiving spoken language 

HyPercept is not just a way of recognizing visual images, but may also be applied to 
acoustic stimuli to recognize phonemes, words and sentences. The input to the 
HyPercept process would be acoustic low level input52 like a power-spectrogram 
(“cepstrum”) of the speech which is to be recognized. Certain aspects of this 
spectrogram would, together with the current context, activate phoneme-hypotheses 
(bottom-up), which can then be tested (top-down) by attempting to interpret the input 
accordingly. Likely phonemes act as cues for word hypotheses (bottom-up), these as 
parts of sentence-hypotheses and so on. Thus, the interwoven bottom-up/top-down 
processing of HyPercept acts as a grammatical parser (99: 597-599). Even though this 
is a very superficial and rough model of the process between phoneme recognition 

                                                 
52 Because stimuli sometimes need to be re-visited and reinterpreted in order to interpret them 
as the correct phonemes in the given context, the HyPercept mechanism should not work 
directly on the input of the cochlear nerves, but better on a pre-processed representation that 
acts as a temporary buffer. Such a buffer would be the phonetic loop (Baddeley 1997, p. 52ff). 
Dörner mentions the same process as the simultanization of phonetic perception (99: 741). 
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and semantic interpretation, it hints at the generality of the perceptual principles of 
HyPercept. 

1.10.2 Language and schemas 

A spoken, written or gestured word of a language (or any other sign that stands for a 
concept) is represented by the agent in the form of a sensory schema. This sensory 
schema is associated with the sensory object schema that it denotes, and to the motor 
schema that allows for its production (99: 600-601). 

There can be many word schemas connected to a single word. This polysemy, a 
“semantic disjunction”, is described as the “the synchytic character of general terms” 
by Dörner (99: 604) and extends over behavior programs as well: a word schema may 
contain many behavior programs (99: 602). Semantic disjunctivity leads to a situation 
where there is a reference, but the retrieval yields an ambiguous result. Such 
ambiguities have to be resolved if the result has to be made explicit in a 
communicative context, but during deliberation and during an unfinished 
communicative act, the ambiguity needs to be mentally represented. This is achieved 
by not just retrieving a single reference (for instance the most active one), but by 
highlighting a field of object schemas. If those object schemas are mutually exclusive, 
then only the one with the strongest activation (which is determined by context) 
comes to attention. The other object schemas in the field remain active, however, and 
if the context changes (for instance by adding additional perceptual or informational 
cues later on), another schema might become the strongest competitor in the field and 
win the attention.  

If we look at grammatical language, we notice that object schemas are represented 
by nouns. Verbs and prepositions open up empty slots (“Hohlstellen”) in schemas 
that have to be filled in later on by a binding process (99: 614, 625). The constraints 
of the object classes that can be filled into these open schema slots are learned 
successively during the acquisition of communicative competence in the language. 

1.10.3 Understanding language 

During an attempt to match a language symbol to an arrangement of episodic and 
object schemas, a lot of ambiguities have to be resolved. This is done by a variety of 
mechanisms: 

- If many possible objects match a given ambiguous slot, often the intended one can 
be found by choosing the one that has the highest relevance in the given context. 
Whenever the agent encounters an object, either in perception or during the 
communication, the respective schema receives activation, which does not cease 
immediately but remains for a certain amount of time, thus leading to a priming 
effect. Such primed schemas add their pre-activation to the activation they receive 
during the ordinary retrieval process, which increases the likelihood of them 
filling the open slot. 

- An ambiguity might also be filled by a prototype. This is similar to default 
reasoning (Brewka 1989).  
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- Another way of resolving an ambiguity consists in looking for a particularly well-
proportioned solution, one that is aesthetically or otherwise appealing.  

- It might not be necessary to have a stable resolution of the ambiguity. In many 
cases, it could be preferable to constantly and frequently switch between possible 
solutions. This “flickering” is sustained until a ‘nice’ solution is found, which 
then takes precedence over the field of alternatives.  

- Not every ambiguity needs resolving, sometimes an ambiguity may simply being 
left open. (99: 626) 
 

Like the recognition of words, the idea of language understanding has hypothesis 
based perception at its core. Language understanding, as Dörner suggests it, amounts 
to running a HyPercept process on a phrase structure grammar (99: 633, 637). The 
HyPercept mechanism is again cued by initial features, for instance relation words 
(99: 631). The open slots in the schemas associated to the relation words are then 
filled in based on the current pre-activated context. The solutions are checked for a fit 
with a dynamical world model capturing the communicative content, and the 
resulting hypothesis structure is expanded and revised until a stable result is reached 
(99: 650). As during other perceptual tasks, the HyPercept algorithm works as a 
grammatical parser and the syntactic schemas of the language can be treated as 
specific episodic schemas (99: 636). 

 
Understanding does not always require complete parsing. The main goal of the 
recognition of an utterance is its disambiguation, that is, the construction of a schema 
that is described by the communicated symbols, where all open slots (“Hohlstellen”) 
have been filled in (99: 640). Often, single words are sufficient, because they can, 
based on the current context, evoke complete situational descriptions. Often, if the 
context and the individual symbols do not yield to an interpretation, the process of 
parsing itself may produce additional structural information that aids in 
disambiguating the utterance. (As a graphic example, take nonsensical terms in 
children’s songs or in poems like the famous “Jabberwocky” in Lewis Carroll’s 
“Alice in Wonderland”, where word forms become discernible as names, places, 
adjectives, roles, actions performed unto an object, descriptions of locomotion etc. 
because of their places in the narrative structure itself (99: 644).) 

Language understanding is often accompanied by the evocation of mental 
imagery. But this is not necessarily and always the case: it is often sufficient that the 
relationship between the communicated symbols and the referenced schemas can be 
established by the hearer. These schemas can give rise to imagination, but they do not 
have to (99: 645-646), it is enough if the hearer knows that the connection to the 
references has been established without evoking the reference (the associated object 
schemas) itself. In some instances however, the inner screen will be a necessary tool 
to construct and simulate the communicated scenery: such a constructive process is 
sometimes indispensable to understanding. (99: 648, 674) 

In some other theories of cognition, there is a notion of a distinct propositional 
layer, which is separated from the conceptual references. For instance, Anderson 
(1996, p. 141, 356) suggests an ‘amodal memory’, which covers exclusively 
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relational representations without references to context. Dörner does not subscribe to 
this notion. While he agrees on the use of pointers (i.e. references from abstractions 
of relationships into instances of these), he sees no reason for an area of memory 
where relations are handled without such pointers. 

1.10.4 Learning language 

The first step in learning a language consists in teaching by pointing (99: 604), where 
one communication partner directs the attention of the other to an object and a 
‘guessing game’ on the intended meaning ensues. Thus, language learning 
presupposes a mechanism for shared attention and a teacher that possesses a mental 
model of what is already known by the pupil (to allow for the incremental learning of 
complex, combined concepts). 

Teaching by pointing does, of course, only work for non-abstract objects and 
simple spatial relationships. Abstract and complex objects have to be taught using 
relations to already established representations. Also, some classes of words 
(pronouns, conjuncts, function words like “because”) are not inferred by a direct 
reference, but from the recurring context of their use (99: 619). 

1.10.5 Communication 

Understanding between participants in a communication is always related to a goal. 
This communicative intent is the main criterion for the structuring of utterances (99: 
684), often, it does not just include the current sub-goal of the given context, but of 
the “higher goal” (99: 519). Communicative goals include: 

- the goals of the agent in the present, past and future 
- plans, reasons and probabilities in the present, past and future 
- what is (has been, will be) the case 
- why something is the case (reasons) 
- conditionals (if and when) 

 
Speaking, or more generally, language production, has been treated relatively 
superficially by the Psi theory (99: 651). Roughly, it consists of: 

- identification of an abstract episodic schema for what is intended to be 
communicated 

- the retrieval of the respective syntactic schema 
- the binding of the elements in the syntactic schema to the actual elements 
- the activation of a behavior program for language production 

 
There are several classes of statements. Specifically, we may distinguish between 
assertions, questions, answers and imperatives (99: 593-594). 

Questions are a special type of communicative entities and can be recognized as 
such by the parsing process (99: 661). The purpose of a question consists in obtaining 
bits of missing information from other agents (or the agent itself). In fact, asking 
questions is a behavior strategy that may lead to the satisfaction of the uncertainty 
reduction urge (99: 676-680). Typical examples of questions are “Yes/No” questions, 
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where a hypothesis is being constructed and proposed that can be confirmed or 
disconfirmed (99: 663). A “W” question requires the extension of a schema with a 
particular element: depending on the question type (in English and German mostly 
marked by a specific question word), the “what/where/why” questions ask for the 
completion of open or ambiguous slots in an (abstracted) episodic schema. Examples 
for such completions include reason, actor, object, properties of subject or action, 
instrumentality, origin of occurrence, goal, finality (purpose), location, time and 
underlying episodic schema.  

Different languages vary in their number and differentiation of the question 
words. Often, the question words are polysemous (they refer to more than one 
possible continuation of a schema), but each question type indicates a preferred slot 
for completion (99: 664-667). 

 

 
Figure 1.21: What, where and why questions and their relationships to schema structure 

Imperatives are meant to establish a goal in another agent. Those goals are not ‘final’. 
They serve other goals (for instance the other agent’s demand for affiliation, its 
avoidance of a threat or another demand satisfaction) (99: 686-687). 

Pleas are a more friendly type of imperative that include an assertion of 
competence on the part of the communication partner and thus might result in a rise 
of self-confidence in the one asked. This effect of pleas leads in many cultures to a 
ritualization of pleading (99: 689). 

 
Statements can be made more specific by annotating them (99: 655-657). Possible 
modifications of statements include possibility and time, which means the expression 
of an 

- indicative 
- conjunctive (in branches of expectation horizon) 
- past, present and future (i.e. in protocol, in current world model or in expectation 

horizon) 
Furthermore, statements can be distinguished based on their sparseness or 

elaboratedness (which is depending on the disambiguation level that is meant to be 
achieved), whether they are concrete or abstract, or if they are meant as synonyms. 
‘Hollow’ statements (open sentences) may act as variables (99: 672). 

 
Communicative utterances do not have to be literal, of course, but they might convey 
the communicative intent by alluding to an analogous situation. An extreme case is 
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irony, where the communicative intent is made visible by stating the absurd. Thus, 
incorporating the statement conveys an additional message, which can be 
disambiguated to reveal the actual intent (99: 659). 

1.10.6 Problem solving with language 

Language is an integral part of complex problem solving (Dörner, Bartl 1998). Most 
of the more sophisticated problem solving strategies are too complex to work without 
recurring to the structuring aid language provides. For instance, sophisticated 
planning that goes beyond the ruthless and unreflective application of a single 
algorithmic principle may amount to an “internal dialog with oneself” (99: 729). In 
the following section, some typical human problem solving behaviors are outlined. 

1.10.6.1 “General Problem Solver” 
The General Problem Solver (or GPS, for short) is a procedure that has been 
described in a famous work by Newell and Simon (1961). It consists in 

- Making out the differences between the initial state and the goal state, 
- Identifying an operator to remove these differences, 
- If the operator is applicable, apply it. Otherwise, a sub-goal is constructed, which 

consists in obtaining conditions suitable for the application of the operator; the 
sub-goal is then made the new current goal (99: 707). 
 

The GPS has been very influential to cognitive modeling and has shaped the concept 
of problem solving in the cognitive architectures Soar (Laird, Newell, Rosenbloom 
1987) and ACT (Anderson 1996, p. 250ff). However, GPS is not sufficient as a 
model of human thinking. For instance, in many cases the inapplicability of an 
operator will not lead to the establishment of a new sub-goal but rather to abandoning 
the main goal and the selection of a new main goal. Dörner suggests viewing the 
course of thoughts as something much more loosely organized, as a sequence of self-
imposed questions, imperatives and statements (99: 708). GPS is probably not the 
paradigm that is followed by all human problem solving, it is just one possible 
strategy. 

1.10.6.2 Araskam 
Dörner has suggested additional strategies, for instance a schema he has named 
Araskam (Dörner and Wearing 1995), which is an acronym for “General Recursive 
Analytic-Synthetic Concept Amplification” (“allgemeine rekursive analytisch-
synthetische Konzept-Amplifikation”). (99: 718-720) 

Araskam is not a direct approach from a given situation to a goal, but rather a 
diversive exploration by abductive reasoning. It consists in the following basic steps: 

1. For an insufficiently explored concept, retrieve its parts and super-concepts. 
2. Add missing detail to the concept by attempting to transfer elements from co-

adjunctive categories, as long as these elements do not contradict already 
established knowledge. (An example given by Dörner is: “A flea is an insect; 
another insect would be a butterfly. Since butterflies have a proboscis, fleas 
might have a proboscis too.” (99: 719)) 
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3. Attempt to identify relationships to other knowledge, especially episodic 
schemas and super-concepts. (This might be done by a HyPercept process 
that starts out with the original concepts and their ‘new’ features.) 

These steps might be repeated and used recursively; the purpose of Araskam is the 
discovery of previously unknown relationships that can be employed for new 
strategies. 

1.10.6.3 Antagonistic dialogue 
Sometimes, the goal of a problem solving process consists in deciding on a single, 
albeit complex question. In these cases, it is helpful to adopt multiple viewpoints. An 
inner dialogue between an advocate and an opponent to the topic in question might 
ensue, where both sides exchange arguments that are examined and weighted against 
each other (99: 768). The resolution of the conflict between those attorneys becomes 
a sub-goal gaining importance on its own, and if this conflict remains unsolvable, a 
meta-conflict might ensue that seeks to establish a way of settling the struggle or to 
abandon it (99: 775-776). 

 
These strategies can tackle a wide variety of problems, and with a meta-management 
behavior that examines the progress made by the currently active strategy with 
respect to the current class of problems, the agent may display flexibility in their 
application. Still, problem solving is not a single, general method. A Psi agent should 
not have to rely on a fixed, limited set of pre-defined methods, but eventually, it 
should develop these strategies on its own and adapt them (99: 727-728). 

1.10.7 Language and consciousness 

Currently, Psi agents are not conscious, and Dörner likens them to animals (99: 740). 
With more abstract thinking, which Dörner suggests to work like an internal 
question/answer game, agents may autonomously acquire new schemas not just from 
environmental stimuli. Grammatical language is the tool that leads to a cognitive 
explosion (99: 797), to conscious reflection (99: 736-742) and to culture (99: 589). 

Therefore, Dörner distinguishes the current state of implementation and a more 
future, more fully realized Psi agent as Psi sine lingua and Psi cum lingua: 

The Psi sine lingua (the agent in its current stage) possesses a rather particularistic 
concept of the world. A Psi cum lingua could abstract the objects of its environment 
into relationships of cause and effect, into things, actors, instruments; it could 
speculate and arrange its concepts into new ways (99: 740). 

 
Dörner notes that consciousness is a very heterogeneous notion (99: 789-791). It 
comprises  

- awareness 
- attention 
- readiness for action 
- wakefulness 
- state and degree of constitution of a concept of self by reflection 
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While most items on the list are already covered to some degree by existing Psi 
agents, the reflective processes are not specified with enough detail and probably 
require language to work sufficiently. With language, it is possible to question current 
strategies, and even current questioning strategies, i.e. language also allows to 
construct and employ meta-strategies.53 Dörner claims that thinking can not be 
separated from knowing about the respective thoughts. Thus, verbal thinking 
strategies (unlike the non-verbal problem methods strategies described earlier) are 
represented in such a way as to be completely accessible. Dörner argues that certain 
levels of reflection amount to the conscious awareness of the respective concepts (99: 
723). 

1.11 Psi agent architecture summary 

Now that we have examined the individual components and structures of a Psi agent, 
let us have a look at how these components make up an agent’s action regulation. 
This section gives a summary on the interrelations of the elements of the Psi theory. 
Naturally, because many individual parts have not yet been completely specified 
within the theory, the architecture is somewhat fragmentary, and even some of the 
parts that have been hinted at above have been left out. First of all, this happens for 
the sake of simplicity. For instance, in Dörner’s implementation, there is a module 
that supplies facial expressions, but its integration into the architecture does not aid 
understanding the cognitive principles of the agent itself. On the other hand, many 
relationships have not been specified explicitly in Dörner’s publications, and the 
implementation in the actual agent seems to have happened ad hoc, so it would 
perhaps be a misrepresentation to include a more elaborate description here. A cut 
down top-level view of the workings of the system is given below:  

 

                                                 
53 There is no reason that this should lead to an infinite regression, as some philosophers have 
feared. Technically, meta-reasoning does not require a new layer within the system; it may take 
place on the same layer as other considerations, even though it makes parts of them to their 
object (99: 726). 
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Figure 1.22: Psi architecture, overview 

Psi agents are based on something like a “sense-think-act” cycle, but perception, 
planning and action do not necessarily occur in strict succession. Rather, they are 
working as parallel processes and are strongly interrelated. Of course, planning and 
action selection rely on perception, and the execution of behaviors depends on the 
result of planning and action selection.  

All actions of the system happen due to motivational impulses which are supplied 
by the agent’s pre-defined dynamic demands. The agent may not directly control 
these demands, rather, they are specified by its “physiology” and perceived through 
sensors. While some of the demands relate to the agent’s dependence on external 
resources (energy and water) or its integrity, there are also cognitive demands 
(certainty and competence). The demand for affiliation is an example of a social urge, 
which can only be fulfilled by other agents. 

The satisfaction of a demand is reached by consumptive events, for instance the 
intake of water (which decreases the water demand), the exploration of an unknown 
situation (which leads to more certainty) or the successful completion of a plan 
(which raises the competence level). Such an accomplishment is indicated by a 
pleasure signal, a positive reinforcement signal. Conversely, aversive events are 
defined by the raise of a demand. They are pointed out by a displeasure signal, which 
provides negative reinforcement. 

An insufficiently satisfied demand is signaled as an urge by the demand sensors, 
and might give rise to a motive. Motives are selected according to the strength of the 
urge and the estimated chance of realization (i.e. the agent will not choose a motive 
for its actions that it expects not to have a chance of satisfying). 
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The active motive determines the choice of actions by triggering and controlling 
the planning behaviors of the system: The motive pre-activates content in the agent’s 
long-term memory. Most important is the identification of those situations and events 
that have lead to the satisfaction of the motive-related demand in the past. These 
consumptive events are chosen as goals, and the system attempts to construct a plan 
that leads from the current situation to the goal situation. 

External stimuli are interpreted according to hypotheses, which bring them into a 
relationship to each other and allow the conceptualization and recognition of complex 
objects (using object schemas), situations and processes (using episodic schemas). 
These hypotheses are built incrementally, stored in and retrieved from long-term 
memory. The active motive determines part of the context by pre-selecting a set of 
hypotheses which may increase the speed and relevance of recognized objects and 
situations. 

Planning and action selection consist of a broad set of cognitive behaviors, which 
might even be evaluated, modified and stored in long-term memory for future use. 
Eventually, they yield behavior programs that can be executed with respect to the 
environment. 

Perceptions derived from the environment and the actions that have been 
performed on it become part of the agent’s situation image, a description of the 
present situation. This situation image is the head of a protocol chain that holds the 
agent’s past. The strength of the links in the chain depends on the motivational 
relevance of the events in the current situation: whenever an appetitive goal is 
fulfilled (i.e. a demand is satisfied), or an aversive event ensues and leads to a sudden 
rise of a demand, the links of the current situation to its immediate past are 
strengthened, so that relevant situations become associated both to the demand and to 
the sequence of events that lead to the fulfillment of the demand. Over time, weak 
links in long-term memory may deteriorate, and “islands” of related events appear. 
These fragmentary sequences of motivationally relevant events can later be used for 
planning. 
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Figure 1.23: Psi architecture—the effect of expectations on certainty and competence 

The hypotheses which are used in the recognition of episodic event sequences create 
an expectation horizon against which actual events can be matched. In the same way, 
the hypotheses of objects which are used to recognize complex items and situations 
take the form of expectations which can either be satisfied or violated. And likewise, 
the outcome of actions can match or violate the expectations which were part of the 
plan that governs the current behavior of the agent. The agent strives to increase the 
reliability of its expectations. There is actually a specific demand related to this—the 
reduction of uncertainty. Whenever an expected event fails to turn up, the anticipated 
outcome of an action does not materialize, unknown objects appear or known objects 
display unexpected aspects, the agent’s certainty drops. A low certainty increases the 
likelihood of choosing uncertainty reduction as an active motive. Reduction of 
uncertainty is achieved by exploration, which leads to the construction of more 
complete or more accurate hypotheses, and it is measured by matches between 
expectations and actual perceptions and action outcomes. 

Whenever the action control system of the agent chooses a leading motive, it has 
to estimate its chances to satisfy the related demand. If strategies for the satisfaction 
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of the demand have been discovered in the past, the respective protocols might be 
used to estimate a probability of success (which is called ‘specific competence’ here). 
This requires a known chain of events and actions leading from the current situation 
to the goal. If there is no such definite plan, the agent has to rely on other measure for 
its decision—a general sense of competence. This estimate, called ‘general 
competence’, is provided by calculating a kind of floating average over all successes 
and failures of the agent. Competence, the efficiency of the agent in reaching its goals 
and fulfilling its demands, is a demand in itself—successes increase the competence, 
and failures decrease it. A high competence reflects a high coping ability—either the 
environment is not very challenging, or the agent is well up to the challenge. The 
urge for more competence can then only be fulfilled by actively seeking difficulties. 
Vice versa, a low competence level suggests that the agent should abstain from taking 
risks and asks for more stereotypical behavior according to those strategies that have 
worked in the past. 

Together, competence and certainty direct the agent towards explorative behavior; 
depending on its abilities and the difficulty of mastering the environment, it will 
actively seek novelty or avoid complexity. 
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Figure 1.24: Psi architecture—influence of activation, resolution level and selection 
threshold modulators 

In a dynamic external and internal environment, the cognitive and physiological 
processes of the system should adapt to the current needs. This is achieved by a set of 
modulators, the most central one being activation. Strong urges (which correspond to 
a high, possibly vital demand) increase the activation of the agent, and a strong 
activation corresponds to greater readiness for action at the cost of deliberation, and 
to more energy expenditure at the cost of economy. This is often necessary to escape 
a dangerous situation, to hunt down prey, to meet a deadline. Thus, the activation 
modulator will influence perceptual and deliberative processing, and it will affect the 
action execution. 

More immediate action, faster perception and shorter planning are detrimental to 
elaborated planning, extensive retrieval, thorough memory reorganization, careful 
and fine-grained perception. These behaviors are therefore modulated by the 
resolution level parameter: A high resolution level results in greater depth and width 
of the schema structures used in perception, deliberation, memory organization and 
retrieval. Whereas more resolution captures more detail, it comes at the cost of 
overview and processing speed. Thus, the resolution level parameter is balanced 
against the activation level; high activation means low resolution and vice versa. 

Furthermore, the agent needs to adapt its readiness to change its motive, mainly 
depending on the motive itself and its strength. This is achieved by setting a dynamic 
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selection threshold, which is added to the relative strength of the currently active 
motive. A low selection threshold leads to more flexible behavior, while a high 
selection threshold makes it difficult to change the active motive and helps to avoid 
oscillations between conflicting behavioral strategies. 

 
The action regulation of Psi agents is the foundation of all higher cognitive processes 
(Detje 1996, p. 63) and the pre-requisite for its extensions towards richer interaction, 
language, more sophisticated deliberative processing and communication between 
agents. 

1.12 Dörner’s Psi agent implementation 

Several implementations of Dörner’s Psi agents exist: starting from earlier, partial 
implementations of the emotional/motivational model (EmoRegul: Dörner, Hamm, 
Hille 1996), the island simulation (“Psi Insel”) evolved, which makes use of 
simplified hypothesis based perception (HyPercept) and planning mechanisms. This 
version was later amended for different experiments with language (Künzel 2004), 
comparisons with human subjects (02: 249-324, Dörner 2003, Detje 1999, 2000, 
Dörner and Starker 2004) and social simulation (Dörner, Levi et al. 2001). Different 
scenarios, like the ‘city world’ simulation and Johanna Künzel’s “Kanal-Welt” 
(sewer world) introduced different object definitions. A forthcoming implementation 
(Dörner, Gerdes 2005) which desists from using HyPercept focuses on social 
interaction in a multi-agent system. 

1.12.1 The Island simulation 

Dörner’s most complete implementation at the time of writing is part of the 
simulation “Psi Insel”, where an agent has to navigate an island in pursuit of fuel, 
water and bonus items (“nucleotides”), while preserving its integrity54. Unlike the 
EmoRegul algorithm, a Psi agent is an autonomous, situated virtual creature instead 
of an event processor; it needs to satisfy a set of physiological demands, and if it fails 
doing that (i.e. the fuel, water or integrity level reaches zero), it breaks down. 
 

                                                 
54 This section refers to Psi 4.9.1.320, version from January 29, 2004, available from Dietrich 
Dörner. 
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Figure 1.25: The “island” environment for Psi agents 

The environment consists of a graph that can be traversed along its edges using 
directional locomotion commands (“north”, “north-east”, “east”, “sourth-east” and so 
on). Each vertex of the graph is presented as a two-dimensional situation made up of 
non-overlapping objects.  

Each object is a closed shape that is drawn entirely from vertical, horizontal or 
diagonal pixel arrangements. The agents possess sensors for these types of 
arrangements and can move these sensors over the object definitions to obtain a low-
level visual description of the objects, which is organized into line-segments, which 
are then grouped into shapes. Colors are ignored—objects are only discernible by 
their black outlines. 
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Figure 1.26: Situation graph and situation image 

The agents interact with the environment through a set of operators, which are 
locomotive (movement between situations and focusing on an object within a 
situation) or directed onto an object (eating, gripping, sucking, blowing, hitting, 
burning, sifting, shaking, planting and even kissing). If the object is unsuited to the 
type of action (like an attempt to burn a pile of sand), nothing will happen. If an 
object is compatible to the action type, it may assume a new state (for instance, a tree 
that has been burned might turn into a pile of ash).  

Some actions will have an effect on the demands of the agent: devouring a 
hazelnut reduces the demand for fuel, for instance, and sucking salt-water increases 
the demand for integrity (because it damages the agent).  

Kissing is reserved for the reduction of the demand for affiliation via application 
on other agents. (Because the introduction of other agents in the original 
implementation gave rise to difficulties, teddy bears were soon around to take the part 
of the objects of affection). 
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Objects are state machines, where each state is visualized in a different manner. 
The states can change on their own: plants may grow and wither; fire may flare up 
and die down. Most state transitions, however, are brought forth by actions of the 
agent: for example, if the agent drinks from a water puddle, the puddle might turn 
empty; if it burns a tree, the tree may turn into a burning tree, and then into a 
smoldering stump. 

 
Figure 1.27: Objects in the island world may change over time. Actions of the agent, 
such as burning a tree, may only work on certain states of the objects, and will affect 
the outcome of object state transitions. 

Some plants even have a “growth cycle” from seed to plant, so the agent may benefit 
from revisiting a place with young plants at a later time to harvest. Some plants 
regrow fruits after picking, unless the plant itself has been damaged by the agent. 

 
Figure 1.28: Some objects may exhibit a “growth cycle”, such as a hazelnut bush, 
which may regrow after its fruits have been picked. 

The success of an action depends on the correct choice of the object it is applied on, 
and on the state of the object. For instance, to pick up a fruit, it might be necessary to 
find a fruit-bearing tree first, and then shake it. 

 

 
Figure 1.29: Sometimes multiple actions are required to achieve a goal, such as shaking 
a tree first, before a fruit can be obtained. 

Incompatible actions do not have an effect on an object, but sometimes, the outcome 
of a meaningful action might not be immediately visible. For instance, breaking a 
rock may need multiple hits. 
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Figure 1.30: Sometimes, to achieve a desired result, an action has to be repeated, such 
as hitting a rock multiple times to open a passage. 

Some objects have similar shapes: there are different rocks and trees that look very 
much alike, and when regarded with low resolution level, they may seem identical to 
the agent. Because some objects (for instance, rocks) may conceal valuable gems 
(“nucleotides”) inside, it pays off to identify those details that may be predictors for 
whether they warrant further investigation. It is possible to treat every similar looking 
object likewise, but it means that the agent has to spend more energy. 

 
Figure 1.31: The outcome of actions may be different for objects of similar appearance. 
At a low resolution level, the Psi agent will miss telltale differences that would predict 
if it is going to find nucleotides in a pile of sand or a piece of rock. 

The agent implementation within the “Psi Insel” software consists of a Delphi 
program that is being made available by Dörner’s group (see internet homepage of 
the Psi project). Its core is a model of human action regulation that can be directly 
compared to the performance of humans which are put in the same problem solving 
situation. In addition, it provides tools to illustrate the agent’s performance, especially 
in the form of graphs and as a two-dimensional facial animation that visualizes 
emotional states based on the modulator configuration and pleasure/displeasure 
situation of the agent (Gerdes and Dshemuchadse 2002). 

The island simulation exists in many versions, some with extended or restricted 
operators, or even with customized object sets. There is also a three-dimensional 
version of the island, called “Psi 3D”, which uses static, scalable bitmaps (so-called 
“billboards”) to display the objects. The interface allows for continuous movement in 
all directions. As the objects in the 3D island world may transmit messages to their 
neighboring objects, it is possible for flames to spread from tree to tree and for a 
wooden log to make a stream passable. Also, objects may be carried around to be 
applied in a different context, allowing for more difficult problem solving. The 
difficulties posed by perception of overlapping objects and continuous movement 
have so far limited the 3D environment to experiments with human subjects. 
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Figure 1.32: Psi 3D 

1.12.2 Psi agents 

The following section will mainly describe the EmoRegul system, which implements 
the action regulation and emotion model of the theory. The Psi agent of the “Psi 
Insel” simulation extends EmoRegul by mechanisms for the interaction with the 
environment. Because its implementation is not canonical and usually simplifies the 
theory that we have explained so far, I will not present a detailed analysis of the 
program here, but rather a short overview that might as a starting point for those 
interested in perusing the source code. Since the actual mechanisms have been 
explained in the previous sections, this introduction is probably only of interest for 
those that want to know more of the state of these partial implementations and does 
not add much to the understanding of the theory itself. 

The processes within EmoRegul are mainly the following (Schaub 1997, p. 114, 
Schaub 1993, p. 89): 
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Figure 1.33: The main processes in the EmoRegul program  

1.12.3 Perception 

The module Percept implements the perceptual apparatus of EmoRegul and the Psi 
agent, both for external and for internal phenomena. It maintains three data structures: 

- the current situation image, which captures the external and internal environment 
- a protocol of the situations so far (episodic memory) 
- the expectation horizon, which consists of a extrapolation of the current situation 

in the future, based on actual plans and memorized episodic schemas. 
 
The perception of external events makes use of HyPercept, which realizes a bottom-
up/top-down actualization and confirmation of perceptual hypotheses. HyPercept is 
part of the Percept module in the Psi agent, but does not play a role in the older 
EmoRegul.  

The internal environment of the agent might be perceived by connecting the state 
of all currently active components of the action regulation processes to the protocol 
memory, so that internal configurations can be memorized and retrieved. 

The HyPercept algorithm currently regards only static pictorial data. It takes 
simple bitmaps as its input, segments them into distinct, non-overlapping objects and 
uses a “retinal sensor” which looks for diagonal or horizontal arrangements of three 
adjacent pixels. These arrangements are sorted into line segments and chains of these 
line segments are annotated with their relative coordinates and combined into shapes 
(see figure 1.32). These shapes are then treated as schematic description of objects. A 
situation in the agent world may be characterized by a certain arrangement of objects, 
but because objects may change due to operations of the agent, the situations are 
distinguished independently of their content (but the content is nevertheless 
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associated to the situations to allow the agent to memorize the location of objects in 
the world). 

The processing of object schemas relies on two sub-processes: assimilation and 
accommodation. Accommodation matches existing representations with percepts, 
starting with a single feature. This feature is used to determine the set of possible 
hypotheses (all objects that contain the feature). Then, the neighboring features are 
sought based according to the hypotheses, until a matching object schema is found. 
The modulator resolution level speed up the matching procedure by determining how 
many features of the object are being compared before the hypothesis verification is 
considered successful. Thus, if the resolution level is low, the agent might mistake an 
object for another it shares features with. If accommodation fails, the assimilation 
process generates a new object schema from the perceptual input by exhaustively 
tracing its features and combining the result into lines and shapes. 

1.12.4 Motive generation (GenInt) 

The GenInt process gives rise to what will become intentions, i.e. it pre-selects and 
constructs motives. First, all demands are evaluated. If a difference to the respective 
target value can not be automatically regulated and is beyond a certain threshold, a 
motive is generated for the demand by calculating the strength, retrieving a simple 
plan (automatism) from protocol memory, if possible, and storing it in intention 
memory (MemInt). MemInt is simply a list containing intention data structures (see 
below). 

The generation of an intention depends on a threshold which is proportional to the 
sum of all target deviation of all already established motives. Thus, the stronger and 
more numerous the active motives are, the more difficult does it get to establish a 
new one. 

Intentions are deleted as soon as the related target deviation disappears. The time 
it took to resolve the related goal is then memorized to allow for future predictions 
(previous recordings of the time it took to reach the same goal are averaged against 
the most recent episode). 

1.12.5 Intention selection 

The SelectInt process chooses the active intention ActInt from the motives in 
intention memory by evaluating the plans with respect to their timing. By comparing 
the available to the anticipated time frame (i.e. the expected number of time-steps 
until the agent perishes due to lack of water, compared against the estimated time to 
reach a water source), the urgency is determined. Examining the structure of the plan 
itself (mainly by regarding its branching factor) yields an estimate of its success 
probability. Together with the motive strength, the SelectInt process obtains a 
measure that allows picking an available motive. The selected motive receives a 
“bonus”, which corresponds to a selection threshold, and which adds a hysteresis that 
keeps the active intention more stable. 
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SelectInt also checks whether it is feasible to pursue more than one motive at once 
(for instance, to visit a water source en route to an energy source). If possible, 
SelectInt amalgamates the motives by combining and storing the compatible plans. 
 
The central data structure is the intention and is made up of: 

- the competence estimate c55 which is the expectancy of realizing the goal;  
0 ≤ c ≤ 1 

- the headway that has been made in the plan, called factum; 0 ≤ factum ≤ 1 
- the importance imp of the related demand, which reflects the deviation to the 

target value. In the case of aversive goals, the importance is set to a constant, 
which reflects the agents desire to avoid negative situations 

- the urgency urg of the intention; 0 ≤ urg, where 0 corresponds to no urgency at 
all, and urg > 1 suggests that the goal is threatened 

- the time tterminus until the goal will probably be reached, in simulation steps56 
- the class of the motive moti 
- the number of time steps since the intention became active acttime57 
- the time tω that it will probably take to reach the goal 
- the planning time nplan, which specifies how many time steps have been spent to 

generate a plan associated to the motive 
- the planning coverage coverage58 that specifies, which proportion of the distance 

between the current situation and the goal situation is covered by the plan;  
0 ≤ coverage  ≤ 1 

- the plan quality quality59 that measures the degree of elaboration of the plan; 
usually, if coverage is high, then quality is low (i.e. many avenues and possible 
branches have not been explored) and vice versa. 

1.12.6 Intention execution 

The process RunInt attempts to reach a consumptive goal (the satisfaction of the 
active intention) by executing a plan that is related to it. In the simplest case, this plan 
has been identified and stored by GenInt, and it has been established as an 
automatism, a previously encountered sequence of actions and events that lead from 
the current situation to the goal situation. If no such goal-oriented behavior program 
is known, RunInt attempts to construct it by modifying an existing behavior or by 
creating a chain of actions and events from scratch through a hill-climbing procedure. 
It the creation of a plan is not successful, the failure is marked by decreasing 
competence, which will likely trigger orientation and exploration behavior in the 
future, and the motive is sent back into MemInt. The agent then falls back into a trial-
and-error strategy, which begins with those objects about which the agent has the 
least information, and by moving into situations that have not been well explored.  
                                                 
55 “Komp” 
56 “ter” 
57 “ActTerZeit” 
58 “AusmassPlanung” 
59 “GuetePlan” 
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1.12.6.1 Events and situations in EmoRegul and Isla nd agents 
The world model of EmoRegul reflects the motivational relevance of the 
environment. The “world” of EmoRegul is based on an event model, where each 
time-step may bring a new event. Such events may increase or decrease a demand, 
they may be useful or hindering in reaching a demand-related goal-event, and they 
may be predictors of other events, thus allowing for anticipation.  

In accordance to the environment, in every time-step, at most one event is stored 
in the protocol. Later on, the stored sequences of events are used to anticipate future 
sequences, for instance the reactions of the environment on actions of the agent. The 
event types allow the prediction of appetitive and aversive situations, the estimation 
of the difficulty and success probability of plans and, by evaluating signaling events, 
the adjustment of the system according to expected future events. 

In the Psi agent of the “Insel” simulation, the representation of the environment is 
more sophisticated, and it is no longer a complete description of the simulation world. 
Here, the protocol consists of a list of situations, which only partially captures the 
features and structures that are accessible to the agent, and which is by and by 
extended into a directed graph. Situations are connected by pointers that represent 
por-links. Each situation contains a list of spatially arranged objects, and the pointer 
from situations to objects is equivalent to a sub link. The sensory description of each 
object is made up of a linked list (again, the pointers are considered to be por-links) 
of line segments, and line segments are made up of (sub linked) line elements. Line 
elements are arrangements of either two horizontal, two vertical or two diagonal 
pixels, against which the pictorial input of the perceptual algorithm is matched. Thus, 
the environmental descriptions of the Psi agents are hierarchical and can be used for 
the bottom-up/top-down processing of a HyPercept algorithm. However, for 
simplicity, the hierarchies have a fixed height and structure, for instance, objects can 
not be made up of sub-objects, situations can only contain objects and not sub-
situations. While this reduces the flexibility of the agent in modeling its environment, 
it makes the algorithmic solutions faster and more straightforward, for instance, in 
order to check the protocol for a situation containing a goal element, it is sufficient to 
check the sub-linked object list within each situation instead of using recursion for 
matching and learning. 

Because of the structure of the environment, the agents need some specific 
operators that allow them to act on it: 

- locomotion happens with respect to one of eight directions. It is not always 
possible to move in each of the eight directions, usually, only a few are available. 
By successfully applying a directional locomotion operator, the agent moves into 
a different situation. By learning the relationship between locomotion and 
situation, the agent can build a simple mental map. If it has a goal that requires to 
get into a certain situation, then it can attempt to remember or even construct a 
plan out of movement actions that lead it from the current situation to the desired 
one. 

- focusing consists of approaching an individual object, thereby making it 
accessible to detailed examination and manipulation. Focusing an object is called 
aggression, receding from the object regression.  
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- manipulation actuators consist of a set of possible operators which are applied to 
the currently focused object: picking/eating, drinking, hitting, shaking, sifting, 
kissing and so on yield success with some object types but not with all. The agent 
learns over time, which operations are applicable to which object and might even 
yield a useful result. 

The basic building blocks of representations in the Psi agents are neurons, which 
are have a type of either sensor, motor, demand-related, protocol, control or short 
term storage. Each neuron is simply made up of an activation value and an axon (an 
array of synapses). Axons are of type por, ret, sub, sur, pic, lan,60 satisfaction-related, 
goal-related, demand-related or aversion-related. Finally, synapses consist of the 
neuron they connect to, a weight and sometimes a temporal or spatial annotation. 
Neurons, which are not used throughout the agents, are realized using pointer 
structures. Thus, spreading activation can be simulated by maintaining pointers that 
trace these structures, but this is done sequentially, so parallel processing algorithms 
(for instance merging two spreading activation fans) are not realized. 

1.12.6.2 Modulators 
EmoRegul is modulated by  

- a general activation (“Arousal”), depending on the current demand strengths: 

 ( ) ( ) 1
log 1 log 2 1activation Imp Urg numberOfActiveMotives

−= + + ⋅ +∑ ∑  

  (1.10) 
and (by two thirds) on the activation of the previous cycle,  

- the SecuringRate (or “Abtastrate”, sampling rate), which is calculated as 
 

( )1 0.5SecuringRate epistemicCompetence Urg Imp fear unexpectedness= − − ⋅ ⋅ + +  

  (1.11) 
with 

 ( )( ) 10.21 t currentCycle fearConstantfear Imp e ω
−− −= +   (1.12) 

and unexpectedness depends on the number of unexpected events in the previous 
interval. The probability of detecting an event in the environment is calculated as 

 
1

2
2

P epistemicCompetence SecuringRate Activation= + ⋅  (1.13) 

- the ResolutionLevel 
- the experience, which is determined by an asymptotic function (i.e. initially 

growing steeply, then slower), depending on explorative success. 
- the competence, which is calculated using successes and failures (see below) 

 
In the agents, the modulation follows similar principles, but a different schema with 
different entities. Here, we maintain 

- the setting of the ascending reticular activation system (ARAS), which 
corresponds to attention/physiological activation in humans and is calculated as a 

                                                 
60 For a description of the link types, see section 1.4.8 on basic relationships. 
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product of the demand strengths (each weighted by its relative importance) and 
the logarithm of the agent’s activation (Arousal). 

- the resolutionLevel, which is inverse to the ascending reticular activation 
- the selectionThreshold, which is proportional to the ascending reticular 

activation. 

1.12.6.3 Pleasure and displeasure 
The actions of EmoRegul and Psi agents are controlled by appetence and aversion. 
Appetitive goals are marked by associations between demand indicators and 
situations that lead to a reduction of the respective demand, and likewise, aversive 
goals are marked by associations to demand-increasing situations (like accidents, 
‘poisoning’ or failures). Appetitive associations are strengthened by pleasure signals, 
while aversive associations are increased by displeasure signals. 

Pleasure and displeasure signals are proportional to changes of demands. Thus, 
the demand changes are crucial for learning. The implementation in EmoRegul 
suggests an integration of pleasure and displeasure from the different sources: 

The signals are called LUL (from German: “Lust/Unlust” for pleasure/displeasure) 
and are a sum of three components: Pleasure/Displeasure from expecations (LULA), 
from hope and fear (LULB), and from actual satisfaction or frustration of the agent’s 
urges (LULC). 

 
Pleasure/Displeasure from fulfilled or violated expectations is calculated 
independently in each simulation step. For each anticipated event that takes place, for 
each indicating event and for each successful action, the LULA component is 
increased by a constant value, the experienceConstant, for failures an unexpected 
events a similar constant is deducted. 

During exploration, the increment of LULA is determined as  
 ( ) ( )1 Random 1

ALUL Activation SecuringRate ResolutionLevelδ = − ⋅  (1.14)  

where Random(1) is a random value between 0 and 1. 
For planning, we compute LULA as 
 

 
( )

( )
1

1
ALUL experienceConstant ResolutionLevel experience

competence SecuringRate
δ = −

⋅ −  (1.15) 

 
Pleasure/Displeasure from hope and fear (LULB) can be computed by summing 
positive values for anticipated positive events and negative values for anticipated 
aversive events. Those events that are just predictors of positive and negative events 
are reflected with pleasure/displeasure signals as well, they receive half the value of 
the events that they foretell. 
 
Pleasure/Displeasure from failure and satisfaction (LULC) is calculated as a the 
difference of the changes of demands. Positive changes (towards the target value) are 
weighted with a pleasureConstant, negative changes (away from the target value) are 
multiplied with a displeasureConstant. If multiple changes occur at the same time, 
their effects are summed up. 
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The overall pleasure signal is just the sum: A B CLUL LUL LUL LUL= + +  and is used 
as a reinforcement signal for learning, and for the determination of the competence 
parameter of the system. If LUL is positive: 

( ) ( )1 1

1 11 2 1t t tcompetence competence LUL currentCycle competence k
− −

− −= + + ⋅ +  

  (1.16) 
where k is a constant value, competencet-1 is the value of competence in the 

previous cycle, and currentCycle is the number of the current simulation step. Thus, 
the competence increases stronger in the early interactions of the system and is less 
influenced at a later time. For negative LUL (displeasure) the influence on a high 
accumulated level of competence is stronger: 

( ) ( )1 1

1 11 2 2t t tcompetence competence LUL currentCycle competence k
− −

− −= + + ⋅ −  

  (1.17) 
 
Obviously, these formulas provide ad hoc solutions to describe functional 
relationships of the theory; they have been adjusted to provide ‘plausible’ behavior, 
and other solutions might fulfill their tasks as well. In the agents, the calculation has 
been abbreviated, for instance, fear is only represented by a mechanism of avoiding 
aversive situations during planning/execution. (However, there is an explicit fear 
estimate in the agents as well, which is given by the product of the demands for 
competence and certainty. This estimate does not play a role for decision making, but 
is only used for displaying emotional states in an animated face.)  

1.12.7 The behavior cycle of the Psi agent 

The behavior cycle of a Psi agent is more detailed than the one in EmoRegul, but 
closely reflects the descriptions in (99), although the different areas of the agent 
(perception, motivation and planning/action control) are not executed in parallel, but 
consecutively. This is not really a problem, because the simulation occurs step-by-
step and unlike in many other cognitive models, timing is not a crucial aspect in 
comparing human and model behavior here. 

Initially, the agent calls its perceptual routines and updates its world model: the 
current situation is generated (by the procedure Percept, which makes use of 
HyPercept) and stored as a spatial arrangement at the end of the protocol chain of the 
agent’s long term memory (procedure Protokoll).  

The management of demands and motives happens as follows: 
 

- First, demands and demand satisfactions are computed (procedure 
NeedAndCompetence): For all motives, we check their activity, weighted with 
the motive weight and the time they are active; the competence level is then 
decremented by a small proportional factor. (The more needs the agent has and 
the longer they persist, the lower does the competence parameter drop.) 
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- The currently active motive ActualMotiv is derived (procedure Motivation). 
There, we also calculate action tendencies, which are later used to determine 
open decisions. The tendencies are calculated as: 

 ( )1aggressionactionTendency certaintyDemand competenceDemand= ⋅ −  (1.18) 

 flightactionTendency certaintyDemand competenceDemand= ⋅  (1.19) 

 safeGuardactionTendency certaintyDemand competenceDemand= ⋅  (1.20) 

 ( )1diversiveExplorationactionTendency certaintyDemand competenceDemand= ⋅ −  

  (1.21) 
 ( )1specificExplorationactionTendency certaintyDemand competenceDemand= ⋅ −  

  (1.22) 
 

- Motive strengths depend on an expectation by value principle, where value  is the 
strength of a demand multiplied with the importance that demand, and 
expectation is an estimate of the competence to reach to satisfy the demand:  

 ( )d d dmotiveStrength weight demand competence epistemicCompetence= +  

  (1.23) 
- Here, competence is a parameter reflecting the general ability of the agent to 

tackle its tasks, and epistemicCompetence relates to the specific ability of 
reaching the goal. The latter is calculated using the logarithm over the sum of the 
strengths over all retrieved connections between the current situation and the goal 
situation.  

- A list of goals GoalList is maintained (procedure GoalGen, which uses the 
strength of individual motives and the selectionThreshold to determine the active 
goal). 

 
Next, the agent climbs through the Rasmussen ladder of action selection and 
planning: 

- The procedure LookAround checks if in the current situation, there are things to 
be done that lead to goals or intermediate goals, or if there are associations from 
the situation to one of the goals (in other words, if there is an object that is a goal 
for an active motive). If that is the case a triplet (of start situation, action and goal 
situation) is returned, and this action is performed immediately. 

- If there is no immediate action to be taken, the agent attempts to find an 
automatism from the current situation to an active goal (the procedure 
Automatism takes a list of goals, the current aspect of the situation and returns a 
triplet). Searching for an automatism works by attempt to do forward and 
backward searches. The depth of the search depends on the resolutionLevel (the 
higher the resolution level, the deeper the search; in fact, for the depth, the value 
of the modulator resolutionLevel is just multiplied by 10).  

- If no such automatism is retrieved, an attempt is made at constructing a plan 
(procedure PlanenUndTun). If no current plan exists, the system combines 
triplets to find a path from the current situation aspect to an active goal, first by a 
forward, then by a backward search, using a hill-climbing paradigm and a depth 
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that is determined by the resolutionLevel (here, the resolutionLevel parameter is 
multiplied by 20). If a plan is found, the corresponding intention parameters are 
updated and the planning instance is stored in the protocol. 

- In case planning was not successful, the agent switches to diversive exploration 
(procedure WhatCouldBeDone). Depending on the setting of the current 
resolutionLevel, the agent probabilistically decides for the currently accessible 
objects, if their current level of certainty (i.e. the degree of knowledge about their 
reaction to the agent’s operators) warrants further exploration. This exploration is 
done in a trial-and-error fashion, where those actions which are relevant to an 
active goal are tested first. For instance, if the agent is in need of food, it is likely 
to test the edibility of unknown objects before they are subjected to less motive-
related actions like burning or shaking. After starting the exploration of an object, 
the resolutionLevel also determines (probabilistically) to what extend it has to be 
examined before switching to a different object or situation. 

- If nothing remains to be done, the agent switches to a resting state (procedure 
Ruhe), until a new motive wins over. 

 
Several supplementary procedures are called during action selection and planning, 
most notably: 

- Association: The procedures LookAround, Automatism and WhatCouldBeDone 
all entail looking for associations using spreading activation. The procedure 
Association checks if one of the elements in GoalList is part of the foreseeable 
future, by checking forwards in the protocol for its occurence. Association 
simulates a fan-like spreading of activation in the memory structures, not by 
parallel processing but by recursion. Because the protocol may extend into many 
branches, both width and depth of the search have to be limited. To limit depth, a 
slightly (randomly) decreased value is transmitted at each recursive call (starting 
at 1, with a random decrement between 0 and 0.1, 20 steps are performed on 
average). The width of the search is bounded by consulting the resolutionLevel 
parameter: the lower the resolutionLevel, the higher the probability of an element 
(and its successors) to be ignored in the comparisons. 

- Confirmation: After a behavior program (i.e. a sequence of triplets from a start 
situation to a goal situation) has been found, the procedure confirmation checks if 
this plan is likely to fail. This is estimated by accumulating a refutation weight 
whenever it encounters branches (possible alternative outcomes of actions) in the 
sequence that lead away from the goal. Confirmation makes use of the 
resolutionLevel too: the lower the resolutionLevel, the higher the probability of a 
branching element to be ignored. 

   
The performance of the agent improves through learning and forgetting. There are 
two main fields of learning: on is the acquisition of new object representations and 
protocol elements due to perception, and the other is employed whenever 
something motivationally relevant happens (procedure ReInforceRetro).  

ReInforceRetro is called if a demand decreases (gets closer to the target value) 
or increases (deviates from the target value). Then, the links between the current 
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situation and the preceding protocol elements are strengthened. Starting from the 
present situation, each preceding link with a weight w receives an enforcement of 

 ( )( )2

1 max 0, 0.03t tw w reinforcement n−= + −  (1.24) 

where reinforcement is the initial increase of the link strength, and n determines 
the distance of the respective link from the present situation. In other words, if the 
initial reinforcement is 1, the link to the previous situation is set to ( )2

1w + , the 
link between the previous situation to its predecessor to ( )2

0.97w + and so on, 
and the strengthening will taper out after 33 links. 

The counterpart of this strengthening is forgetting: In each cycle, synapses in 
the protocol may decay according to 

  2
1 Random(1)t tw w cyclesSinceLastChange forgetRate−= − ⋅ ⋅  (1.25) 

where Random(1) is a random number between 0 and 1, 
cyclesSinceLastChange specifies the last time the link strength was increased (so 
freshly changed links receive little decay) and forgetRate is a decay constant. 

1.12.8 Emotional expression 

The Psi agents have been extended by an animated face to display their modulator 
configuration to the experimenter (02: 219-230), it consists of a two-dimensional 
cartoon mask that changes its expression using parameterized Bezier curves. These 
curves correspond to 14 facial muscles:  

- brow lowering, raising, inside movement 
- chin raiser 
- cheek puffer 
- jaw drop 
- lid tightener and upper lid raiser 
- lip corner depressor and puller 
- lower lip depressor 
- lip presser and stretcher 
- nose wrinkler 

Additionally, the color of the face and the pupil dilation can change to reflect the 
ascending reticular activation. 

The expressions of the face are changed according to eight dimensions:  
- “pain” (reflects events that increase the demand for integrity and the current lack 

of integrity) 
- activation (as represented in the unspecific sympathicus activation) 
- “surprise” (decreases of certainty) 
- “anger” (proportional to the lack of certainty and competence, i.e. increases in the 

face of failure; and proportional to the square of the activation) 
- “sadness” (is similar to anger but inversely dependent on the activation) 
- “joy” (reflects a reduction of the demand for competence, which takes place 

whenever the agent reaches a goal or appetitive situation, and the current demand 
is satisfactied) 
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- “fear” (is proportional to the lack of certainty and competence and the current 
changes) 

- “helplessness” (is activated by failed attempts to find automatisms or plans) 
 

Because “pain” and “surprise” are often active for one behavior cycle only, they are 
“dragged out” for the display: In each simulation step, they fade by 20% (unless they 
receive new activation). The levels of “pain”, “surprise”, “anger”, “joy”, “sadness”, 
“fear” and “helplessness” are only derived for display purposes; they do not 
themselves affect the activity of the agent. They are just intermediate variables of the 
emotional expression sub-system—the corresponding emotional states themselves, 
from which these levels are calculated (and which do affect the agent’s behavior) are 
made up of multiple parameters.  

 

 
 
Figure 1.34: Emotional expression by an animated face 

Thus, the emotion dimensions that are expressed usually do not correspond to a single 
cognitive parameter, they are not basic emotions. Instead, they represent a 
combination of modulators, cognitive events and demands, which is mapped to a 
muscular activation. By superimposing the activations that correspond to the different 
emotional dimensions and delaying the release of the expressions of pain, anger, 
sadness, joy and fear, plausible facial expressions can be achieved. 
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2 The Psi Theory as a Model of Cognition 
 

“The new concept of “machine” provided by artificial intelligence is so 
much more powerful than familiar concepts of mechanism that the old 
metaphysical puzzle of how mind and body can possibly be related is 
largely resolved.” 

Margaret Boden, 1977 
 

When we are discussing the Psi theory, we are looking at an attempt to describe the 
nature of cognition, and of how a mind and its specific information processing work. 

Cognition is not a strictly defined and concisely circumferenced subject. In fact, 
different areas in the cognitive sciences tend to understand it in quite different ways. 
In computer science, for instance, the terms ‘cognitive systems’ and specifically 
‘cognitive robotics’ (Lespérance, Levesque et al. 1994) often refer loosely to situated, 
sometimes behavior based agent architectures, or to the integration of sensory 
information with knowledge. In philosophy, cognition usually relates to intentional 
phenomena, which in functionalist terms are interpreted as mental content and the 
processes that are involved with its manipulation.61 

 In psychology, cognition typically refers to a certain class of mental 
phenomena—sometimes involving all mental processes, sometimes limited to ‘higher 
functions’ above the motivational and emotional level, but often including these. 
Cognitive psychology acknowledges that the mind is characterized by internal states 
and makes these an object of investigation, and thus tends to be somewhat in 
opposition to behaviorist stances. Neuropsychology sometimes focuses on cognitive 
processing, and a substantial part of contemporary Cognitive Science deals with the 
examination of the biological processes and information processing of the brain and 
central nervous system. On the other hand, some psychologists argue that the 
neurobiological phenomena themselves take place on a functional level different from 
cognition (Mausfeld 2003), and that although cognition is facilitated by brain 
processes and neurobiological correlates to mental (cognitive) processes have been 
identified, this relationship is spurious and should not mislead research into focusing 
on the wrong level of description. In this view, the relationship between cognition and 
neurobiological processes might be similar to the one between a car-engine and 
locomotion. Of course, a car’s locomotion is facilitated mainly by its engine, but the 
understanding of the engine does not aid much in finding out where the car goes. To 
understand the locomotion of the car, the integration of its parts, the intentions of the 

                                                 
61 The position that intentional phenomena can be understood as mental representations and 
operations performed upon them is by no means shared by all of contemporary and most 
traditional philosophy; often it is upheld that intentionality may not possibly be naturalized 
(which usually means reduced to brain functions). However, the concept that intentional states 
can be explained using a representational theory of mind is relatively widespread and in some 
sense the foundation of most of Cognitive Science. 
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driver and even the terrain might be more crucial than the exact mode of operation of 
the engine. We will briefly revisit this discussion (see section 2.1.1.1). 

Traditionally, psychology tended to exclude emotion and motivation from the 
realm of cognition and even saw these in opposition. This distinction is currently seen 
as largely artificial, and a lot of research of cognitive psychology is devoted to these 
areas, as well as to higher level cognition (self-monitoring and evaluation, meta-
cognition). Yet, the distinction is often still reflected on the terminological level, 
when reference is made to ‘cognitive and motivational processes’ in order to 
distinguish for instance the propositional reasoning from action control.  

 
Often it is argued that the cognitive processes of an organism do not only span brain 
and body, but also the environment—to understand cognition is to understand the 
interplay of all three. There are several reasons for this: for one thing, because 
cognition might be seen as a continuum from low-level physical skills to more 
abstract mental faculties (van Gelder and Port 1995, p. viii-ix): Just as the motion of a 
limb might not be properly understood without looking at the nature of the 
environment of the organism, cognitive processes derive their semantics largely from 
environmental interaction. Furthermore, the cognitive processes are not entirely 
housed within the substrate of the organism’s nervous system, but partly literally in 
the interaction context with its habitat. While sometimes relevant aspects of the 
environment may be modeled within the organism (in the form of a neural 
“simulator”), these representations will tend to be incomplete and just sufficient for 
interaction, so parts of cognition will not work without the proper environmental 
functionality (Clark and Grush 1999). It has also been argued that the acquired 
representations within the organism should be seen less as a part of the organism than 
of the environment to which it adapts (Simon 1981, p. 53). And finally, an organism 
might use tools which are specifically designed to interact with its cognitive core 
functionality, thus a part of the environment might become part of a mind.62  

 
As we see, it is difficult to put a fence around cognition. Why is the notion of 
cognition so immensely heterogenuous?—I believe this is because the term intends to 
capture the notion of mental activity, of what the mind does and how it gets it done. 
Because there is no narrow, concise understanding of what constitutes mental acitivity 
and what is part of mental processes, much less what has to be taken into regard to 

                                                 
62 See, for instance Clark (2002): “The sailor armed with hooey and alidade can achieve feats 
of navigation that would baffle the naked brain (…). And—perhaps more importantly for this 
discussion—the way such tools work is by affording the kinds of inner reasoning and outer 
manipulation that fit our brains, bodies and evolutionary heritage. Our visual acuity and 
pattern-matching skills, for example, far outweigh our capacities to perform sequences of 
complex arithmetical operations. The slide rule is a tool which transforms the latter 
(intractable) kind of task into a more homely one of visual cognition. Tools can thus reduce 
intractable kinds of problems to ones we already know how to solve. A big question about tools, 
of course, is how did they get here? If tools are tricks for pressing increased functionality out of 
biologically basic strategies, what kinds of minds can make the tools that make new kinds of 
minds?” 
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understand them, cognition, the Cognitive Sciences and the related notions span a 
wide and convoluted terrain. 

The Psi theory of Dietrich Dörner is an attempt to cover most of this terrain in a 
single effort. While it is unsuitable for reaching a depth that would make the work of 
any single discipline obsolete, it can help to look for answers that depend on the 
interrelations of different fields of Cognitive Sciences that it has strung together. 

Dörner’s functional model, while routed in psychology, strives to be a particular 
kind of answer to the question of how the mind works. Quite obviously, Dörner’s Psi 
theory, even his approach itself, is very much unlike most contemporary work in 
mainstream psychology. This might not be a fault of the theory, rather, this 
methodological discrepancy can best be understood by looking at the recent history of 
psychology. 

2.1 Cognitive Architectures as Models of the Mind 
“Every intelligent ghost must contain a machine.” 

Aaron Sloman (2002) 

 
Current psychology has its roots as a natural science in the psychophysics of Fechner 
and Helmholtz, and became an independent discipline when Helmholtz’ pupil 
Wilhelm Wundt founded his experimental laboratory at the University of Leipzig in 
1874 (Boring 1929). Yet the understanding of psychology as an experimental science 
has often been challenged, especially by the psychoanalytic movement that was 
primarily founded by Sigmund Freud in the 1890s and followed up (among many 
others) by Sandor Ferenzci, Carl Jung, Melanie Klein, Michael Balint, Donald 
Winnicot, Heinz Hartmann, David Rapaport, Jacques Lacan, Slavoj Zizek, Charles 
Brenner. Because of the speculative nature of the psychoanalytic assumptions, 
psychology came under heavy fire from positivists and empiricists already in the first 
half of the twentieth century (Gellner 1985, Grünbaum 1984), Karl Popper argued 
that psychoanalysis was flawed, because its statements were not open to falsification. 
In that light, the metaphysical aspects of psychology melted away, the psychological 
mainstream turned away from structuralism and towards the study of the literally 
physical, which meant at the time: of observable behavior. Behaviorism, as proposed 
by John B. Watson (1913) became very influential, and in the form of radical 
behaviorism (Skinner 1938) not only neglected the nature of mental entities as on 
object of inquiry, but denied their existence altogether. At the same time, this 
tendency to deny the notion of mental states any scientific merit was supported by the 
advent of ordinary language philosophy (Wittgenstein 1953, see also Ryle 1949). 
Obviously, the neglegience of internal states of the mind makes it difficult to form 
conclusive theories of cognition, especially with respect to imagination, language 
(Chomsky 1959) and consciousness, so radical behaviorism eventually lost its 
foothold. Yet, methodological behaviorism is still prevalent, and most contemporary 
psychology deals with experiments of quantitative nature (Kuhl 2001). Unlike 
physics, where previously unknown entities and mechanisms involving these entities 
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are routinely postulated whenever warranted by the need to explain empirical facts, 
and then evidence is sought in favor of or against these entities and mechanisms, 
psychology shuns the introduction of experimentally ungrounded, but technically 
justified concepts. Thus, even cognitive psychology shows reluctance when it comes 
to building unified theories of mental processes. While Piaget’s work (especially 
Piaget 1954) might be one of the notable exceptions that prove the rule, psychology as 
a field has a preference for small, easily testable microtheories (Anderson 1993, p. 
69). 

Psychology tends to diverge along the lines of the individual modeled fields into 
areas like developmental psychology, motivational psychology, linguistic 
development, personality theories and so on. Not that these disciplines would be 
invalidated by their restricted approach! Indeed, much of their credibility is even due 
to their focus to an area that allows a homogenous methodology and thus the growth 
and establishment of scientific routines, communities and rules of advancement. But 
this strictness comes at a price: the individual fields tend to diverge, not just in the 
content that they capture, but also in the ways they produce and compare results. 
Thus, it not only becomes difficult to bridge the terminological gaps and 
methodological differences in order to gain an integrative understanding of an 
individual phenomenon—the results from different disciplines might completely 
resist attempts at translation beyond a shallow and superficial level. 

It is not surprising that influences which lead to the study of genuinely mental 
entities and structures within psychology came from different fields of science: from 
information sciences and cybernetics, and from formal linguistics. They fostered an 
understanding that mental activity amounts to information processing, and that 
information processing can be modeled as a complex function—an algorithm—
working over states which encode representations. In my view, the most important 
contribution of the information sciences to psychology was the extension of 
philosophical constructivism into functionalism and the resulting methodological 
implications.  

Functionalist constructivism is based on the epistemological position of 
philosophical constructivism (see, for instance, von Foerster and von Glasersfeld 
1999) that all our knowledge about the world is based on what is given at our 
systemic interface. At this interface, we do not receive a description of an 
environment, but features, certain patterns over which we construct possible 
orderings. These orderings are functional relationships, systems of categories, feature 
spaces, objects, states, state transitions etc. We do not really recognize the given 
objects of our environment, we construct them over the regularities in the information 
that presents itself at the systemic interface of our cognitive system. 

For example: if we take a glance out of the window on a cloudless day, we do not 
really perceive the sun, rather, we identify something we take as a certain luminance 
and gestalt in what we take to be a certain direction, relatively to what we take to be a 
point in time. A certain direction is understood as something we take as a 
characteristic body alignment to something we take as a certain place and which 
makes a certain set of information accessible that we take to be a certain field of view. 
In such a way, we may decompose all our notions into the functional features that are 
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the foundation of their construction. Thus, all our notions are just attempts at ordering 
patterns: we take sets of features, classify them according to mechanisms that are 
innate within our interpretational system and relate them to each other. This is how 
we construct our reality. 

To perceive means on one hand to find order over patterns; these orderings are 
what we call objects. On the other hand, it amounts to the identification of these 
objects by their related patterns—this is intuitively described as the recognition of an 
object by its features, just as if we would observe the objects themselves instead of 
constructing them. 

An opponent of this view (arguing, for instance, from an essentialist or realist 
perspective) might suggest that we intuitively do have access to physical objects in 
the world; but this argument may be tackled using a simple thought experiment: if 
someone would remove one of the objects of our world and just continue to send the 
related patterns to our systemic interface (for instance, to our retina) that correspond 
to the continued existence of the object and its interaction to what we conceptualize as 
other physical objects, we would still infer the same properties, and no difference 
could be evident. If, for instance, all electrons in the world would be replaced by 
entities that behave in just the same way, batteries would continue to supply electrical 
energy, atoms would not collapse and so on: no difference could ever become 
evident.63 Now imagine the removal of the complete environment. Instead, we (the 
observers) are directly connected (for instance by our sensory nerves) to an intricate 
pattern generator that is capable of producing the same inputs (i.e. the same patterns 
and regularities) as the environment before—we would still conceptualize und 
recognize the same objects, the same world as we did in the hypothetical world of 
‘real’ objects. There can be no difference, because everything that is given is the set 
of regularities (re-occurrence and seeming dependencies between the patterns).64 

The same restriction applies, of course, to the mental phenomena of the observer. 
The observer does not have an exclusive, intimate access to the objects of its 
cognition and representation which would enable it to witness ‘real’ mental states. 
What we know about ourselves, including our first-person-perspective, we do not 
know because we have it available on ‘our side of the interface’. Everything we know 

                                                 
63 A similar example is supplied by Hilary Putnam (1975): Individuals in a hypothetical twin-
world to earth on which all water has been replaced by a chemical compound XYZ with 
identical properties would arrive at the same observations and conceptualizations. Thus, the 
content of a concept that is encoded in a mental state refers to the functional role of the codified 
object. 
64 This should be immediately clear to anyone who is familiar with controlling a robot: for the 
control program of the robot, the environment will present itself as vectors of data, attributable 
to sensory modalities by the different input channels. For all practical purposes, the world 
beyond the sensors is a pattern generator, nothing more, nothing less. The patterns will show 
regularities (some of these regularities may even be interpretable as feedback to motor actions), 
but the identification of structure and objects from these patterns happens due to the activity of 
the robot control program, not because of the specifics of the pattern origin. If the world is 
replaced by an artificial pattern generator (a simulated environment), so that the input data 
show the same statistical properties with respect to the interpretation, the control program can 
not know of any difference. 
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about ourselves is a similar ordering we found over features available at the interface, 
we know of mental phenoma only insofar as they are explicitly accessible patterns or 
constructed over these patterns. Even though our cognitive processes are responsible 
for the functionality of ordering/conceptualization and recognition, they are—insofar 
as they are objects of our examination—“out there” and only available as regularities 
over patterns (over those patterns that we take to be aspects of the cognitive 
processes). 

From such a point of view, the Cartesian “cogito ergo sum” is a quite problematic 
statement. “Cogito” is just the expression of the belief of being in a certain state—and 
necessarily on the basis of certain perceived features. And naturally, these features 
may have been caused by something different than a cognitive process. The 
presupposition of a cognitive process is already an interpretation of procedurality, 
past, distribution and structure of these features. If we want to discover something 
about our minds, we will have to go beyond our Cartesian intuition and ask: what 
properties make up our respective concepts? What is the relationship between these 
concepts? 

What the universe makes visible to science (and any observer), is what we might 
call functionality. Functionality, with respect to an object, is—loosely put—the set of 
causally relevant properties of its feature vector.65 Features reduce to information, to 
discernible differences, and the notions we process in our perception and imagination 
are systematically structured information, making up a dynamical system. The 
description of such systems is the domain of cybernetics or systems science (Wiener 
1948, Ashby 1956, von Bertalanffy 1968, Bischof 1968, Bateson 1972, Klir 1992). 
Systems science is a description of the constructive methods that allow the 
representation of functionality.  

Thus, in order to understand our concept of mind, we have to ask how a system 
capable of constructing has to be constructed, what features and interrelations 
determine the relevant functionality. The idea of describing the mind itself as a 
functional system66 has had an enormous impact on a certain area on psychology and 
philosophy, which has consequently been associated with the term functionalism 
(Fodor 1987; Putnam 1975, 1988). If a functionalist subscribes to representationalism 
(the view that the functional prevalence of a mental state entails its representation 
within a representing system) a functionalist model of cognitive processes might be 
implemented as a computer program (computationalism) and perhaps even verified 

                                                 
65 To be more accurate, the notion of causality should be treated with more care, since it is an 
attribution, not an intrinsic property of the features. Because causality is an attributed structural 
propery, functionality itself is constructed, even though the regularities classified as causality 
are not. 
66 According to David K. Lewis (1972), mental states make up certain ‘higher order states’, 
which can be defined using existential quantification over ‘first order’ physical states. The 
mental state expressions in a theory Ψ of causal roles of mental states can then be represented 
by ‘higher order’ variables X1...Xn ranging over a domain of physical states. To predicate the kth 
mental state expression to an individual c, we can note: ∃ X1...Xn (Ψ(X1...Xn) ∧ Xk(c))). Thus, a 
physical state φk(c) realizes the mental state corresponding to the kth expression in Ψ iff φk is in 
a set of physical states φ1... φn that together satisfy Ψ(X1...Xn).  
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this way, so functionalism often goes hand in hand with computer science’s proposal 
of Artificial Intelligence.67 Even if mental processes could not be modeled as a 
computational model—any detailed, formal theory on how the mind works certainly 
can (Johnson-Laird 1988, p. 9). 

The idea of a full-featured model of the crucial components of human cognition 
was advanced by Alan Newell and Herbert Simon as a consequence of the physical 
symbol system hypothesis (Newell and Simon 1976). According to this hypothesis, a 
physical symbol system, i.e. an implemented Turing machine, “has the necessary and 
sufficient means for general intelligent action. By ‘necessary’ we mean that any 
system that exhibits general intelligence will prove upon analysis to be a physical 
symbol system. By ‘sufficient’ we mean that any physical symbol system of sufficient 
size can be organized further to exhibit general intelligence.” (Newell 1987, p. 41)68 

A system capable of fulfilling the breadth of cognitive tasks required for general 
intelligence is a model of a unified theory of cognition (Newell 1987), an 
implementation of a so-called cognitive architecture.  

The development of cognitive architectures follows a different paradigm than 
strict experimental psychology: instead of posing an individual question, designing an 
experiment to find evidence for or against a possible anwer and performing a study 
with a group of subjects, the cognitive modeler asks how a certain set of cognitive 
feats (for instance, in problem solving) could be possibly achieved and suggests a 
solution. This solution integrates previous research and might be even detailed 
enough to make specific predictions on task performance or neural correlates, which 
allow experimental falsification, either by behavioral studies or by neurobiological 
examiniations (for instance brain imaging). Because the entities that are proposed in a 
cognitive architecture are usually not all empirically accessible, they have, to put it 
loosely, to be engineered into the system: the validity of the model depends on 
whether it works, in accordance to available empirical data, and whether it is sparse, 
compared to other available models explaining the same data.  

This approach to understanding cognition equals the adoption of what Aaron 
Sloman has called the constructionist stance (Sloman 2000), and bears a slight 
similarity to Daniel Dennett’s suggestion of the design stance: “knowing how to 
design something like X is a requirement for understanding how X works,” (Sloman 
and Chrisley 2005). 

                                                 
67 Even though computationalism usually entails functionalism and representationalism, some 
philosophers maintain that it is possible to be a computationalist without being a functionalist 
(Block 1995).  
68 Is the physical symbol systems hypothesis equivalent to: “Iron ore is necessary and sufficient 
for building a locomotive?” On the surface, it goes way beyond that, because not every system 
built by intricately arranging iron molecules can be extended to pull a train. The physical 
symbol system hypothesis really refers to a functional, not a material relationship; a better 
metaphor might be that a steam engine has the necessary and sufficient means to drive a 
(steam) locomotive; that a steam engine will be found at the core of every steam locomotive, 
and that every conveniently sized steam engine could be suitably extended. Lets bear in mind, 
though, that the notion of computation is far more general than the principles of a steam engine. 
Colloqually speaking, it does not engender much more than systematic regularity. 



 
 

 
 
 

104 The Psi theory as a model of cognition 

In principle, a system might be described by identifying its physical makeup—this 
is what Dennett would term the ‘physical stance’. With respect to the mind, such a 
description might entail a complete depiction of brain processes, which is usually 
regarded as unwieldy, perhaps even infeasible, and probably alludes to the wrong 
level of functionality, just as a thermodynamical description of air molecules might 
not be helpful to a meteorologist when forecasting tomorrow’s weather. A different 
view is lent by the ‘design stance’, which examines the components making up an 
artifact, such as buttons, levers, insulators and so on. Such components might be 
replaced by other components which serve the same purpose. In a way, this 
engineering viewpoint is a teleological one, and it might also be applied to biological 
organisms with respect to organs and the roles they play within the organism. Dennett 
adds the ‘intentional stance’, which is the description of a system in terms of 
attributed intentional states, such as beliefs, attitudes, desires and so on (Dennett 
1971). The intentional stance allows predictions about the behavior of the system, but 
is by no means a complete systematical description, because it does not explain how 
the intentional properties are realized. (Dennett himself does not maintain that the 
intentional description is always a functional description. Rather, it is an attribution, 
used by an external observer to characterize the system.69)  Of course, the descriptions 
of a thing as either physical, designed or intentional are not mutually exclusive—it 
can be all these things at the same time, and the stance just marks a different way of 
looking at it. The physical properties of the system realize the properties of the 
abstract components that are part of its design, and the intentional properties of the 
system are eventually realized by the physical properties as well. To find a design 
description, a structural arrangement of components that realizes the intentional 
system of a mind might not be a bad description of what the creator of a cognitive 
architecture is up to.  

The goal of building cognitive architectures is to achieve an understanding of 
mental processes by constructing testable information processing models. Every 
implementation that does not work, i.e. that does not live up to the specifications that 
it is meant to fulfill, points out gaps in understanding. The integration of regularities 
obtained in experimental psychology into the architecture is not just a re-formulation 
of what is already known but requires an additional commitment to a way this 
regularity is realized, and thus a more refined hypothesis, which in turn makes further 
predictions that can be taken into the lab of the experimental psychologist. 

The difference to behaviorism is quite obvious. While the cognitive modeling of 
functionalist psychology is reluctant to propose and support entities that are not 
necessary to achieve a certain observable behavior (including everything that can be 
observed using behavioral and neuroscientific methods), functionalist psychology is 

                                                 
69 The intentional stance is permissive—for instance, a system has a belief in case its behavior 
can be predicted by treating it as a believer. This “maximally permissive understanding” 
(Dennett 1998, p. 331) makes no specific claims about inner structure or organization. Rather, 
Dennett suggests that the properties of a cognitive system are brought forth by a broad 
collection of “mind tools” which individually need not bear relationships to the outwardly 
interpretable functionality.  
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essentially compatible with the ideas of scientific positivism, because it makes 
empirically falsifyable predictions of two kinds:  

- The proposed model is capable of producing a specific behavior (or test subjects 
will show a previously unknown property of behavior predicted by the model). 

- The model is the sparsest, simplest one that shows the specific behavior with 
respect to available observations. 

If the predictions of the model are invalidated by observations or a more concise 
model is found, the original model will have to be revised or abandoned. Because 
cognitive architectures have many free variables, it is often possible to revise an 
obsolete model to fit conflicting data, so the methodological implications and 
criticisms arising are by no means trivial. As a result, cognitive architectures as 
theories do not behave as proposed by classical proponents of positivist methodology: 
they are often less predictive than integrative (Newell 1973). But then, large scientific 
theories rarely do. Just as the extensive theoretical bodies of physics, chemistry and so 
on, the unified theories of cognition are not isolated statements that are discarded 
when one of their predictions is being refuted. Rather, they are paradigms, viewpoints 
that direct a research program, and their adoption or abandonment depends on 
whether they can be characterized as what Imre Lakatos has called a “progressive 
research paradigm” (Lakatos 1965), that is, if the shifts in their assumptions lead to 
more predictions that are substantiated with evidence instead of necessitating further 
repairs.70  

 
The functionalist view on mental phenomena is by no means undisputed in 
philosophy (Block 1978, Putnam 1988). Attacks come from many directions. 
Especially famous is the position of John Searle, who attacks functionalism by 
claiming that mental processes, especially consciousness, would be a “causally 
emergent property” of the physical organism and stem from certain properties 
provided only by biological neurons (Searle 1992, p. 112). Thereby, Searle ascribes 
properties to biological neurons that go beyond their otherwise identifiable 
functionality, i.e. an artificial replacement for a neuron that would show the same 
reactions to neurochemicals and the same interactions with other neurons would not 
be capable of a contribtion to consciousness, and thus, his argument marks an 
essentialist position (Laurence and Margolis 1999) that is already incompatible with 

                                                 
70 These requirements are not reflected by all cognitive architectures, however. For instance, 
while Alan Newell claimed for his SOAR architecture that it was Lakatosian in nature (Newell 
1990), he also stated: “There is no essential Soar, such that if it changes we no longer have the 
Soar theory. […] The theory consists of whatever conceptual elements […] it has at a given 
historical moment. It must evolve to be a successful theory at each moment, eliminating some 
components and tacking on others. […] As long as each incremental change produces a viable 
[…] theory from the existing Soar theory, it will still and always be Soar.” (Newell 1992). I 
will not embark on this aspect of methodological discussion, the interested reader may consult 
(Cooper et al. 1996) for an introduction into the debate of methodological criticisms of 
cognitive architectures. 
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functionalism on epistemological grounds.71 If an entity has to have a property that is 
not empirical itself (and being biological is not an empirical property per se) in order 
to contribute to some functionality, then this entity is conceptually inadequate to 
capture empirical phenomena in the eyes of a functionalist. Daniel Dennett, in an 
introduction to Gilbert Ryle’s classic “Ghost in the machine” (Dennett 2002), 
introduces the idea of a “zombank” to illustrate this. A zombank would be something 
that looks and acts like a financial institution, where people could have an account, 
store and withdraw money and so on, but which is not a real bank, because it lacks 
some invisible essence beneath its interface and functionality which makes a bank a 
bank. Just as the notion of a zombank strikes us absurd (after all, a bank is commonly 
and without loss of generality defined by its interface and functionality), Dennett 
suggests that the idea of a philosophical “zombie”, a cognitive system that just acts as 
if it had a mind, including the ability for discourse, creative problem solving, 
emotional expression and so on, but lacks some secret essence, is absurd. 

Physicalism (or materialism, the philosophical idea that everything is either 
material or supervenes on the material) is often associated with functionalism—there 
is not much controversy between functionalists and materialists, functionalists are 
usually proponents of physicalism (Maslin 2001, p. 184; Kim 1998).72  

If we choose to depict the mind as a dynamical system of functional dependencies, 
we are not necessarily at an agreement of what to model and how to do it. There are 
many possible positions that might be taken with regard to the level of modeling, the 
entities on that level, and of course to the question what makes up a mind. However, 
the path of designing, implementing and experimentally testing cognitive 
architectures seems to be the only productive way to extend philosophy of mind 
beyond its given bi-millennial heritage, which constrains each theory to the mental 
capability of an individual thinker. The knowledge embodied in the materials, 
structure and assembly of almost any complex industrial artifact like a car, a notebook 
computer or a skyscraper goes way beyond of what an individual designer, material 
scientist, planner or construction worker may conceive of or learn in their lifetime, but 
is the result of many interlocking and testable sub-theories within sub-domains and on 
different levels of abstraction, and the same applies to the large theoretical bodies in 
physics, biology, computer programming and so on. Yet in the field of the philosophy 
of mind, theories are typically associated with and constrained to individual thinkers. 

                                                 
71 See Preston and Bishop (2002); a point that deserves particular recognition may be Searle’s 
claim that semantics is something which is not reducible to syntax, and that symbol processing 
systems can only ever know syntax, while intentionality is about semantics (Searle 1980).. 
72 Functionalism does not have materialism as a strong requirement, at least not in the sense 
that states the nessecity of matter as a res extensa in the Cartesian sense (Block 1980). For 
functionalism to work it is sufficient to have a computational system, and assumptions about 
the nature of this system beyond its capabilities with respect to computationability are entirely 
superfluous and speculative. There is also a functionalist emergentist proposal that attempts to 
construct a non-physical functionalism (Koons 2003). On the other hand, there is a position, 
usually called type physicalism, that opposes functionalism and instead maintains that mental 
states are identical to physical states (Fodor 1974, Papineau 1996). 
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If understanding the mind is not much simpler than the design of the plumbing of a 
skyscraper, then there may be reason to believe that any theory of mental functioning 
that fits into a single philosopher’s mind and is derived and tested solely by her or his 
observations and thought-experiments is going to be gravely inadequate. Pouring 
theories of mental functioning into formal models and testing these by implementing 
them may soon become a prerequisite to keep philosophy of mind relevant in an age 
of collaborative and distributed expertise. 

On the other hand, cognitive modeling is lacking approaches that are broad 
enough to supply a foundation for theoretical bodies of a philosophy of mind. Broad 
and not too shallow theories of cognition will be a requirement for substantial 
progress in understanding the mind. 

2.1.1 Some philosophical assumptions of cognitive m odels 

There have been several attempts to classify models of cognition (Logan 1998, Pew 
and Mavor 1998, Elkind et al. 1989; Morrison 2003; Ritter et al. 2002). Architectures 
that attempt to model mental faculties form several methodological groups.  

They might be divided into 
- Classical (symbolic) architectures, which are essentially rule-based. These 

sprang up after Newell’s call for a revival of unified theories in psychology 
(Newell 1973, 1987). Classical architectures concentrate on symbolic 
reasoning, bear influences of a relatively strict language of thought concept, 
as suggested by Fodor, and are often implemented as production based 
language interpreters. Gradually, these architectures have been modified to 
allow for concept retrieval by spreading activation, the formation of networks 
from the initial rules and have occassionally even been implemented based on 
neural elements. 

- Parallel distributed processing (subsymbolic) architectures. This term was 
introduced by John McClelland (Rumelhart, McClelland et al. 1986); here, it 
is used to refer to non-symbolic distributed computing (usually based on some 
or several types of recurrent neural networks). Where classical architectures 
strive to attain the necessary complexity by carefully adding computational 
mechanisms, PDP systems are inspired by biological neural systems. Their 
contemporary forms essentially work by constraining a chaotical system 
enough to elicit orderly behavior. While PDP architectures do not necessarily 
differ in computational power from classical architectures, it is difficult to 
train them to perform symbolic calculations, which seem to be crucial for 
language and planning. On the other hand, they seem to be a very productive 
paradigm to model motor control and many perceptual processes. 

- Hybrid architectures may use different layers for different tasks: a reasoning 
layer which performs rule-based calculations, and a distributed layer to learn 
and execute sensory-motor operations. Hybrid architectures are usually 
heterogenous (i.e. they consist of different and incompatible representational 
and computational paradigms which communicate with each other through a 
dedicated interface), or they could be homogenous (using a single mode of 
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representation for different tasks). The latter group represents a convergence 
of classical and PDP architectures. 

- Biologically inspired architectures, which try to directly mimic neural 
hardware—either for a complete (simple) organism, or as a layer within a 
hybrid approach. 

 
This distinction does not take care of how motivation and emotion are introduced into 
the system. In fact, usually they are of no concern to the core models, because they 
are seen as separate entities. Exceptions to the rule exist, of course, for instance 
Clarion (Sun 2003, 2005), PurrPuss (Andreae 1998) and Dörner’s Psi theory, which 
all treat emotion and motivation as integral aspects of the cognitive system. For many 
other cognitive architectures, separate additions exist, which provide an emotional or 
motivational module that interfaces with the cognitive system (Belavkin, Ritter and 
Elliman 1999; Franceschini, McBride and Sheldon 2001; Gratch and Marsella 2001, 
Jones 1998, Rosenbloom 1998). 

 
In the following sections, we will briefly examine different architectural approaches 
and also mention some approaches from Artificial Intelligence (AI). AI as a field 
arguably does not seem much concerned with full-blown models of cognition 
(Anderson 1983, p. 43), and most AI architectures do not attempt to model human 
performance, but strive to solve engineering problems in robotics, multi-agent 
systems or human computer interaction. On the other hand, contemporary AI 
architectures tend to start out from an agent metaphor, building an autonomous 
system that acts on its own behalf and is situated in an environment, whereas low-
level architectures in psychology usually deal with isolated or connected modules for 
problem solving, memory, perception and action, but leave out motivation and 
personality. There are psychological theories of motivation and personality, of course 
(Kuhl 2001; Lorenz 1965, 1978), but they rarely visit the lowly realms of 
computational models. There is no strict boundary between AI architectures and 
cognitive architectures in psychology, however, and most of the latter are based on 
representational mechanisms, description languages, memory models and interfaces 
that have been developed within AI.  

2.1.1.1 The Language of Thought Hypothesis 
Most research in the field of cognitive architectures focuses on symbolic models of 
cognition, as opposed to subsymbolic, distributed approaches. Classical, symbolic 
architectures are systems that represent and manipulate propositional knowledge. If 
there are things to be represented and manipulated which are not considered 
propositional knowledge, they are nonetheless represented in the form of 
propositional rules (productions). Let us make the philosophical commitment behind 
this approach more explicit: symbolic architectures are proponents of a symbolic 
Language Of Thought (LOT). 

The Language Of Thought Hypothesis (LOTH) is usually attributed to Jerry Fodor 
(1975), and it strives to explain how a material thing can have semantic properties, 
and how a material thing could be rational (in the sense of: how can the state 
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transitions of a physical system preserve semantic properties). (A summary is given 
by Aydede, 1998.)  

Fodor gives the following answers: 
- Thought and thinking take place in a mental language. Thus, thought 

processes are symbolic, and thinking is syntactic symbol manipulation. 
- Thoughts are represented using a combinatorial syntax and semantics. 
- The operations on these representations depend on syntactic properties. 
LOTH is not concerned with questions like “how could anything material have 

conscious states?”, “what defines phenomenal experience?”, “how may qualia be 
naturalized?” 

LOTH did not exactly state something new in 1975, and thus did not open up a 
completely new research paradigm in Cognitive Science. Rather, it spelled out the 
assumptions behind Artificial Intelligence models and cybernetic models in 
psychology, it explicated what researchers where doing already: if perception is the 
fixation of beliefs, the learning of concepts amounts to forming and confirming 
hypotheses, and decision making depends on representing and evaluating the 
consequences of actions depending on a set of preferences. If all these aspects of 
cognition can be seen as computations over certain representations, then there must be 
language over which these computations are defined—a language of thought. Fodor 
was also not the first to express this idea (see, for instance, Ryle 1949), but he 
narrowed it down to an argument that sparked a debate about the nature of the 
language of thought, a debate that is far from over. 

To generalize the notion of thought and thinking in the context of LOTH, we are 
talking about “propositional attitudes”. A propositional attitude A is the relationship 
that some subject S bears to some proposition P about which can be said that S thinks, 
desires, anticipates, etc. that P. In other words, S As that P (with A being an attitude 
verb). LOTH makes three main assumptions: 

First, the representational theory of mind (Field 1978, p. 37, Fodor 1987, p. 17), 
which consists of two claims—the representational theory of thought (i.e. thoughts are 
mental representations), and the representational theory of thinking (the processes that 
operate on the thoughts are causal sequences of instantiations, or tokenings, of mental 
representations). A mental representation is defined simply as some #P# about which 
can be said that whenever a subject S As that P, there is a dedicated psychological 
relation R, so that a subject S bears R to #P#, and, #P# means that P. The mental 
processes (thinking) are a set of operations over these representations. 

Second, LOTH asks that these representations reside somehow in the subject’s 
physical makeup. This amounts to functionalist materialism (i.e. mental 
representations are realized by physical properties of the subject, or, colloquially put, 
mental representations are somehow and only stored in the physical structures of the 
brain and body).—This does not necessarily imply that all propositional attitudes need 
to be represented explicitly (Dennett 1981, p. 107); it is sufficienct if they are 
functionally realized. On the other hand, not all explicit representations within a 
cognitive system need to be propositional attitudes (because not all of them are in a 
proper psychological relation to the subject; see Fodor 1987, p. 23-26). 
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The next assumption of LOTH is, at least as far as Cognitive Science is concerned, 
the most controversial one:  

Mental representations have a combinatorial syntax and semantics, with 
structurally simple, atomic constituents making up structurally complex, molecular 
representations in a systematic way, whereby the semantics of the complex 
representations is a function of the semantics of the atomic constituents and their 
formal structure. This claim about represented mental content is complemented by a 
claim about operations over this content: the operations on mental representations are 
causally sensitive to the formal structure defined by the combinatorial syntax; the 
semantics follow formal, combinatorial symbol manipulation. 

 
According to LOTH, a thinking system is characterized by representational states (the 
“thoughts”) and semantically preserving transitions between them (the “thought 
processes”), which can be described as a formal language with combinatorial syntax, 
i.e. a computational engine. 

 
This immediately raises the question: How does #P# come to mean that P? In other 
words: how does the representational structure of a LOT acquire its meaning? This is 
commonly called the symbol grounding problem (Harnad 1987, 1990; Newton 1996). 
LOTH proponents respond in two ways: either, the atomic symbols can somehow be 
assumed to have a meaning, and the molecular symbols inherit theirs by a Tarski-style 
definition of truth conditions according to the syntactic operations that make them up 
of atomic components73 (Field 1972, Tarski 1956), or the semantics arise from the 
constraints that are imposed by the computational roles the individual components 
assume in the syntactic structure.74 (For a critical discussion, see Haugeland 1981 and 
Putnam 1988.) 

 
How does Fodor back up the strong claim that mental representations are following 
the rules of a formal language with combinatorial syntax?—Obviously, a system may 
represent and compute things without obeying the requirement of combinatorial 
syntax, i.e. non-symbolic, or with limited structural complexity. Fodor (1987, see also 
Fodor and Pylyshyn 1988) points out, that  

1. Thinking is productive. While one can only have a finite number of thoughts 
in their lifetime (limited performance), the number of possible thoughts is 
virtually infinite (unbounded competence). This can be achieved by 
systematically arranging atomic constituents, especially in a recursive 
fashion. 

                                                 
73 This is what the Psi theory does: here, concepts are partonomically defined over atomic 
concepts, which directly refer to sensors and actuators and thus to an interaction context in the 
system’s environment. 
74 If a cognitive system is temporarily or permanently disconnected from its external 
environment, does its mental content stop to be meaningful? If not, then the semantics will have 
to reside entirely within the conceptual structure, i.e. are determined by the constraints that 
individual representational components impose onto each other via their syntactic relationships. 



 
 

 
 
 

 111 

2. Thoughts are systematic and compositional. Thoughts come in clusters, and 
they are usually not entertained and understood in isolation, but because of 
other thoughts they are based on and related to. Thoughts are usually not 
atomic, but are syntactically made up of other elements—in a systematic 
way. Systematically related thoughts are semantically related, too. 

3. Thinking itself is systematic (argument from inferential coherence). For 
instance, if a system can infer A from A and B, then it is likely to be able to 
infer C from C and D, so thoughts are obviously not just organized 
according to their content, but also according to their structure. A 
syntactically operating system takes care of that. 

 
LOTH clearly sets the scene for symbolic architectures. Their task consists in defining 
a format for #P# (i.e. data structures for the different kinds of mental representations), 
distinguishing and defining the different Rs (laying out an architecture that handles 
beliefs, desires, anticipations and so on), and specifying the set of operations over 
these #P# (the different kinds of cognitive processes).  

Not all theorists of cognitive modeling, even though they tend to accept 
functionalist materialism and the representational theory of mind, agree with Fodor’s 
proposal, however; many connectionists argue that symbolic systems lack the 
descriptive power to capture cognitive processes (for a review, see Aydede 1995). Yet 
they will have to answer to the requirements posed by productivity, systematicity and 
inferential coherence by providing an architecture that produces these aspects of 
mental processes as an emergent property of non-symbolic processing. Fodor 
maintains that a connectionist architecture capable of productivity, systematicity and 
inferential coherence will be a functional realization of a symbolic system (i.e. the 
connectionist implementation will serve as a substrate for a symbolic architecture) 
(Fodor and Pylyshyn 1988). 

A weighty argument in favor of connectionism is the fact that low-level perceptual 
and motor processes—which may be regarded as sub-cognitive (Newell 1987)—are 
best described as distributed, non-symbolic systems, and that the principles governing 
these levels might also apply to propositional thinking (Derthick and Plaut 1986). Are 
Language Of Thought systems just too symbolic? A connectionist description might 
be better suited to capture the ambiguity and fuzziness of thought, where a symbolic 
architecture turns brittle, fails to degrade gracefully in the face of damage or noise, 
does not cope well with soft constraints and has problems to integrate with perceptual 
pattern recognition.  

Connectionists might either deny strict systematicity and compositionality of 
thought (Smolensky 1990, 1995; see also Chalmers 1990, 1993), or regard them as an 
emergent by-product of connectionist processing (Aizawa 1997).  

This is the line where classical and connectionist models of cognition fall apart. 
Where Fodor states that because of the productivity, systematicity and 
compositionality of thought, symbolic languages are the right level of functional 
description, connectionists point at the vagueness of thought and argue that the level 
of symbolic processes is not causally closed (i.e. can not be described without 
recurrence to non-symbolic, distributed operations) and is therefore not the proper 



 
 

 
 
 

112 The Psi theory as a model of cognition 

level of functionality (see: Rumelhart and McClelland 1986; Fodor and Pylyshyn 
1988; Horgan and Tienson 1996; Horgan 1997; McLaughlin and Warfield 1994; 
Bechtel and Abrahamsen 2002; Marcus 2002). 

 
Are classicist and connectionist approaches equivalent? Of course, all computational 
operations that can be performed with a connectionist system can be implemented in a 
symbol manipulation paradigm, and it is possible to hard-wire an ensemble of 
connectionist elements to perform arbitrary symbol manipulation, but the difference 
in the stance remains: symbolic processes (especially recursion), which seem to be 
essential for language, planning and abstract thought, are difficult to model with a 
connectionist architecture, and many relations that are easy to capture in a 
connectionist system are difficult to translate into a symbolic, rule-based system, 
without emulating the connectionist architecture. In practice, however, the line 
between classical and connectionist models is not always clear, because some 
classical models may represent rule sets as spreading activation networks, use 
distributed representations and even neural learning, and some connectionist systems 
may employ localist representations for high-level, abstract operations. Hybrid 
systems may combine connectionist and symbolic architectures, either by a common 
(semi-symbolic) mode of representation that allows for both kinds of operations (Sun 
1993; Wermter, Palm et al. 2005),75 or by interfacing a symbolic control layer with 
sub-symbolic perceptual and motor layers (Konolidge 2002; Feldman 2006).  

 
Apart from the connectionist attack, there is another front against Fodor’s proposal in 
Cognitive Science, which denies the second assumption of LOTH—
representationalism.76 This position is exemplified in earlier works of Rodney Brooks 
(Brooks 1986, 1989, 1991, 1994; Brooks and Stein 1993) and denies Fodor’s dictum 
of “no cognition without representation” (1975), by stating that “the world is its own 
best model” and the relevant functional entities of cognitive processes would not be 
information structures stored in the nervous system of an individual, but emergent 
properties of the interaction between the individual and its environment. Therefore, a 
functional cognitive model either requires the inclusion of a sufficiently complex 
model of the environment, or the integration of the model of mental information 
processing with a physical (or even social) environment (Dreyfus 1992). The 
proponents of behavior based robotics (Beer 1995; Arkins 1998; Christaller 1999; 
Pfeifer and Bongard 2006) sometimes reject the former option and insist on a physical 
environment, either because of objections to functionalism (i.e. because they think 
that the simulation of a physical environment is in principle an impossibility), or just 
because they consider a sufficiently complex environmental simulation to be 
practically impossible. Taken to the extreme, behavior based approaches even become 

                                                 
75 This is the approach taken by the author in the specification of the MicroPsi architecture. 
76 There is a vast variety of objections against all aspects of LOTH in the philosophy of mind, 
but because most of them are incompatible with a computational theory of mind and thus do 
not follow the basic assumptions that we have made when considering cognitive architectures 
as a method to model mental processes, they are irrelevant in the given context. 
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behaviorist and deny the functional relevance of mental representations altogether, 
treating them as an irrelevant epi-phenomenon (Brooks 1992; van Gelder 1995; Beer 
1995; Thelen and Smith 1994). Even in their non-radical formulation, behavior-based 
approaches sometimes deny that the study of cognition may be grounded on a 
separation of system and environment at the level of the nervous system. Without the 
inclusion of an environment into the model, the low level configurations of the 
nervous system do not make any sense, and since high level configurations are 
inevitably based on these low level structures, a study of cognition which draws a 
systemic line at the knowledge level, at the neural level or at the interface to the 
physical world, is doomed from the start. 

By highlighting low-level control of interaction with a physical environment, 
behavior based systems achieve fascinating results, such as passive walkers (for 
instance, Kuo 1999; Pfeifer 1998; Collins et al. 2005), which produce two-legged 
walking patterns without the intervention of a cognitive system. The credo of such 
approaches might be summarized as “physics is cognitions best friend,” and they 
sometimes see cognition primarily as an extension of such low-level control problems 
(Cruse, Dean and Ritter 1998; Cruse 1999). I see two objections to radical behavior-
based approaches, which in my view limit their applicability to the study of cognitive 
phenomena: First, while a majority of organisms (Drosophila, the fruitfly, for 
instance) manages to capitalize on its tight integration with physical properties of its 
environment, only a small minority of these organisms exhibits what we might call 
cognitive capabilities. And second, this majority of tightly integrated organisms 
apparently fails to include famous physicist Stephen Hawking, who is struck with the 
dystrophic muscular disease ALS and interacts with the world through a well-defined 
mechatronic interface—his friendship with physics takes place on an almost entirely 
knowledge-based level. In other words, tight sensor-coupling with a rich physical 
environment does neither seem a sufficient nor a necessary condition for cognitive 
capabilities.  

Also, dreaming and contemplation are being best understood as cognitive 
phenomena; and they take place in isolation from a physical environment. The 
physical environment may have been instrumental in building the structures 
implementing the cognitive system and forging the contents of cognition, and yet, 
after these contents are captured, it does not need to play a role any more, in defining 
the semantics of thought during dreaming, meditation and serendipitous thinking. 
Even when high-level cognitive processing is coupled with the environment, it does 
not follow that the nature of that coupling has a decisive influence on this 
processing.77  

                                                 
77 Andy Clark and Josefa Toribio (2001), in a commentary on O’Reagan and Noë’s 
“sensorimotor account of vision and visual consciousness”, have denounced the view that 
conscious processing could only be understood in conjunction with environmental coupling as 
“sensorimotor chauvinism”. They point out the example of a ping-pong playing robot 
(Andersson 1988), which does not know visual experience, and yet performs the task—and on 
the other hand, they argue that it is implausible that all changes to our low-level perception, for 
instance in the speed of saccadic movement, would influence conscious experience. Because 
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For reasons of technical complexity, it might be easier to couple a cognitive model 
with a physical environment instead of a simulation, and a lot may be learned from 
the control structures that emerge from that connection. And yet, the organization and 
structuring of a cognitive system might be an entirely different story, according to 
which the division of the modeled system and the given environment at the somatic 
level or even above the neural level might be just as appropriate as the intuitions of 
symbolic and sub-symbolic cognitivists suggest. 

2.2 Machines of Cognition 

Cognitive architectures define computational machines as models of parts of the 
mind, as part of the interaction between cognitive functions and an environment, or as 
an ongoing attempt to explain the full range of cognitive phenomena as computational 
activity. This does, of course, not equate the human mind with a certain computer 
architecture, just as a computational theory of cosmology—a unified mathematical 
theory of physics—maintains that the universe is possessed by a certain computer 
architecture. It is merely a way of expressing the belief that scientific theories of the 
mind, or crucial parts of research committed to a better understanding of the mind, 
may be expressed as laws, as rules, as systematized regularities, that these regularities 
can be joined to a systematic, formal theory, and that this theory can be tested and 
expanded by implementing and executing it as a computer program. 

2.2.1 Cognitive Science and the Computational Theor y of Mind 

If we take a step back from the narrow issue whether we should use a symbolic 
computational engine to describe cognition, or if we should aim at specifying a 
symbolic computational engine that describes a non-symbolic architecture which 
takes care of producing cognitive functionality (and this is, in my view, what the 
questions boils down to), the fact remains that cognitive modeling is committed to a 
computational theory of mind (see Luger 1995 for an introduction). There are two 
viewpoints in Cognitive Science with respect to the computational theory of mind (i.e. 
that the mind can be described as a computational engine). The theory may be seen as 
an ontological commitment (in the form that either the universe itself is a 
computational process (for instance: Wolfram 2002), and thus everything within it—
such as minds—is computational too, or that at least mental processes amount to 
information processing). But even if one does not subscribe to such a strong view, the 
theory of mind may be treated as a methodological commitment. This second view, 
which I would like to call the “weak computational theory”, has been nicely 

                                                                                                                     
there seems to be no a-priori reason to believe that this is the case, actual environmental 
coupling is not only an insufficient condition, but likely also not a necessary condition for high-
level cognition and consciousness. For high-level mental activity, higher level mechanisms 
(Prinz 2000) such as memory retrieval, planning, and reasoning should be constitutive. Of 
course, this view flies into the face of a lot of contemporary arguments in the area of behavior-
based robotics. 
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formulated by Johnson-Laird, when he said: “Is the mind a computational 
phenomenon? No one knows. It may be; or it may depend on operations that cannot 
be captured by any sort of computer. (...) Theories of the mind, however, should not 
be confused with the mind itself, any more than theories about the weather should be 
confused with rain or sunshine. And what is clear is that computability provides an 
appropriate conceptual apparatus for theories of the mind. This apparatus takes 
nothing for granted that is not obvious. (...) any clear and explicit account of, say, 
how people recognize faces, reason deductively, create new ideas or control skilled 
actions can always be modelled by a computer program.” (Johnson-Laird 1988) 

Indeed, cognitive models can be seen as the attempt “to elucidate the workings of 
the mind by treating them as computations, not necessarily of the sort carried out by 
the familiar digital computer, but of a sort that lies within the broader framework of 
computation” (ibid, p. 9).78 Thus, a complete explanation of cognition would consist 
of a computational model that, if implemented as a program would produce the 
breadth of phenomena that we associate with cognition. In that sense, the 
computational theory of mind is an empirical one: it predicts that there may be such a 
program. Unfortunately, this does not mean that the computational model of the mind 
could be falsified based on its predictions in any strict sense: If there is no 
computational model of the mind, it may just mean that it is not there yet. This lack of 
falsifiability has often been criticized (Fetzer 1991). But does this mean that the 
computational theory of mind is of no empirical consequence at all and does not have 
any explanative power, as for instance Roger Binnick (1990) states? Binnick applies 
the same criticism to Chomsky’s theory of language (Chomsky 1968), even though 
“ linguistics constitutes (apart from the theory of vision and perhaps a few corners of 
neuropsychology) just about the only cognitive system for which we can say we have 
something like a formal and explicit theory of its structure, function, and course of 
development in the organism” (S. R. Anderson 1989, p. 810).  

From the viewpoint of natural sciences, this criticism is surprising, and in most 
cases may be assumed to originate in a misunderstanding of the notion of 
computation. All theories that are expressed in such a way that they may be 
completely translated into a strict formal language are computational in nature. The 

                                                 
78 This does not mean that a digital computer is incapable of performing the computations in 
question. Here, Johnson-Laird hints at parallel distributed processing as opposed to sequential 
binary operations in a von-Neumann computer. The operations that are carried out by a parallel 
distributed system can be emulated on a digital computer with sufficient speed and memory 
with arbitrary precision. Computationally, parallel distributed operations do not fall into a 
different class than those executed by a traditional von-Neumann computer; both are instances 
of deterministic Turing machines with finite memory. An exception would be systems that 
employ certain quantum effects (non-locality and simultaneous superposition of states). Such a 
quantum computer may be in more than one state at once and thus execute some parallel 
algorithms which a deterministic Turing machine performs in non-polynomial time in linear 
time (Deutsch 1985). Indeed, some theorists maintain that such quantum processes play a role 
in the brain and are even instrumental in conscious processes (Lockwood 1989; Penrose 1989, 
1997; Stapp 1993; Mari and Kunio 1995). However, there is little evidence both for quantum 
computing facilities in the human brain and the explanatory power of such states for cognitive 
processes or consciousness is questionable. 
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ontological or methodological assumption that is made by the computational theory of 
mind is not unique to Cognitive Science, but ubiquitously shared by all nomothetic 
(Rickert 1928) sciences, that is, all areas which aim at theories that describe a domain 
exhaustively using strict laws, rules and relations. This is especially the case for 
physics, chemistry and molecular biology. 

Of course, there are areas of scientific inquiry which do not produce insights of 
such nature, but are descriptive or hermeneutic instead. These sciences do not share 
the methodology of natural sciences. Indeed, the rejection of a computational stance 
with respect to a subject marks that the field of investigation is one of the cultural 
sciences (humanities). To treat psychology as a natural science means to subscribe to 
the computational theory of mind—either in its weak or even in its strong form (see 
also Dörner 1999, p. 16). 

This view has also been expanded upon by Aaron Sloman (Sloman and Scheutz 
2001, Sloman and Chrisley 2005). Sloman characterizes the task of describing the 
world as a quest for suitable ontologies, which may or may not supervene on each 
other (Kim 1998). When describing systems that describe other systems, we will 
create second-order ontologies. If such systems even describe their own descriptions, 
recursive third-order ontologies will need to be employed (this is where it ends—
further levels are addressed by recursion within the third). Conceptualizations of 
second order and third order ontologies are creations of virtual machines. A virtual 
machine is an architecture of causally related entities which captures the functionality 
of an information processing subject or domain, and if mental phenomena can be 
described as information processing, then a theory of cognition will be a complex 
virtual machine. 

Contrary to the intuition that machines are always artifacts, here, a machine is 
simply seen as a system of interrelated parts which are defined by their functionality 
with respect to the whole: “Machines need not be artificial: organisms are machines, 
in the sense of ‘machine’ that refers to complex functioning wholes whose parts work 
together to produce effects. Even a thundercloud is a machine in that sense. In 
contrast, each organism can be viewed simultaneously as several machines of 
different sorts. Clearly organisms are machines that can reorganise matter in their 
environment and within themselves, e.g. when growing. Like thunderclouds, windmills 
and dynamos, animals are also machines that acquire, store, transform and use 
energy.” (Sloman and Chrisley 2005) 

For a given system (given by a functional description with respect to its 
environment), however, it is not always clear what the functional parts are—there is 
not even a guarantee that there is sufficient modularity within the system to allow its 
separation into meaningful parts. An ontology that specifies parts needs to be justified 
with respect to completeness—that the parts together indeed provide the functionality 
that is ascribed to the whole—and partitioning—that it does not misconstrue the 
domain. For example, if the gearbox of a car is described as the part that takes a 
continuous rotational movement with a certain angular momentum from the 
crankshaft and transforms it into a variety of different rotational movements with 
different momentums to drive the wheels, this might be a good example for a 
functional element. If the gearbox is removed and replaced by a different unit that 
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provides the same conversion, the function of the overall system—the car—might be 
preserved. Such a separation is often successful in biological systems too. A kidney, 
for instance, may be described as a system to filter certain chemicals from the 
bloodstream. If the kidneys are replaced by an artificial contraption that filters the 
same chemicals (during dialysis, for instance), the organism may continue to function 
as before. There are counterexamples, too: a misconstrued ontology may specify the 
fuel of the car simply as an energy source. If the fuel tank would be replaced by an 
arbitrarily chosen energy source, such as an electrical battery, the car would cease to 
function, because fuel is not just an energy source, but in order to be compatible with 
a combustion engine, needs to be a very specific agent that when mixed with air and 
ignited shows specific expansive properties. It may perhaps be replaced with a 
different agent that exhibits similar functional properties, such as alcohol or natural 
gas, provided that the compatibility with the engine is maintained. Even then, there 
might be slight differences in function which lead to failure of the system in the long 
run, for instance, if the original fuel has been providing a lubricating function which 
has been overlooked in the replacement. Similarly, the mind is not just an information 
processing machine (for instance, a Turing Machine). Still, it may in all likelihood be 
described as an information processing machine as well, in the same way as fuel in a 
car may be depicted as an energy source, but this description would be far too 
unspecific to be very useful! The difficulty does not only stem from the fact that there 
is little agreement in Cognitive Science and psychology what exactly defines mental 
activity (i.e. what the properties of the whole should be). Even if we are reducing our 
efforts to relatively clearly circumscribed domains, the ontologies that we are using to 
describe what takes place on different levels and which supervene on each other are 
not necessarily causally closed.79 For instance, language processing may be difficult 
to study in isolation from the representation of and abstraction over perceptual content 
(Feldman et al. 1996), perception may be impossible to study without looking at 
properties of neural circuitry with respect to synchronization and binding (Engel and 
Singer 2000; Singer 2005), and even relatively basic perceptual processing like the 
formation of color categories may depend on language capabilities (Steels and 
Balpaeme 2005). 

                                                 
79 Causal closure may best be explained by an example: in graphical user interfaces, widgets 
indicating similar functions may be implemented by different programming libraries. 
Nevertheless, a click on the closing icon of a main window usually ends an associated 
application, no matter which interface programming library realizes the functionality. This 
allows for the user to neglect the programming level of the application and use the abstraction 
of the interface when describing the system. But what happens if clicking the closing icon fails 
to close the application? Sometimes, the reason resides on the level of the application interface, 
for instance because the application still holds an unsaved document. In this case, the causal 
frame of the application interface is not broken. But if the window fails to close because of the 
hidden interaction of the programming library with a different application that uses the same 
instance of the programming library, then the behavior of the graphical user interface can only 
be understood if the different programming libraries are taken into account. The frame of the 
graphical user interface is no longer a self-contained ontology but needs to be expanded by 
elements of the level it is supposedly supervenient on. 
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The study of cognitive architectures somehow has to cope with these difficulties—
either by specifying a very complex, mainly qualitative architecture that does not lend 
itself to quantitative experiments (see Sloman and Scheutz 2003; Baars 1993; 
Franklin, Kelemen and McCauley 1998), by attempting to simplify as much as 
possible by reducing the architecture to a small set of organizational principles that 
can be closely fitted to experimental data in narrow domains (Laird, Newell and 
Rosenbloom 1987; Anderson and Lebiére 1998; Touretzky, Hinton 1988; Smolensky 
1995) or by an attempt to find a middle ground (Sun 2005, Dörner 1999, Feldman 
2006). 

2.2.2 Classical (symbolic) architectures 

Alan Newell committed himself strongly to LOTH, when he stated his own version in 
1976 (Newell and Simon 1976): “A physical symbol system has the necessary and 
sufficient means for general intelligent action,” a dictum that has since been known as 
the Physical Symbol Systems Hypothesis (PSSH). According to Newell, a symbol 
system is made up of 

- Memory, which contains the symbol information 
- Symbols, which supply patterns to index information and give references to it 
- Operators, to manipulate the symbols 
- Interpretations, which specify the operations over the symbols 
To function, a symbol system has to observe some basic requirements: it needs 

sufficient memory, and it has to realize composability and interpretability. The first 
condition, composability, specifies that the operators have to allow the composition of 
any symbol structure, and interpretability asks that symbol structures can encode any 
valid arrangement of operators. 

A fixed structure which implements such a symbol system is called a symbolic 
architecture. The behavior of this structure (that is, the program) only depends on the 
properties of the symbols, operators and interpretations, not on the actual 
implementation; it is independent of the physical substrate of the computational 
mechanism, of the programming language and so on. 

The advantages of a symbolic architecture are obvious: because a large part of 
human knowledge is symbolic, it may easily be encoded (Lenat 1990); reasoning in 
symbolic languages allows for some straightforward conceptualizations of human 
reasoning, and a symbolic architecture can easily be made computation complete (i.e. 
Turing computational: Turing 1936). 
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Scale (seconds) System Stratum 

107 

106 

105 

 Social 

104 

103 

102 

Tasks Rational 

101 

100 

10-1 

Unit Tasks 

Operations 

Deliberative Acts 

Cognitive 

10-2 

10-3 

10-4 

Neural Circuitry 

Neurons 

Organella 

Biological 

 Table 2.1: Layers of Description of a Cognitive System (Newell 1990) 

According to Newell (1990), cognitive acts span action coordination, deliberation, 
basic reasoning and immediate decision-making—those mental operations of an 
individual that take place in the order of hundreds of milliseconds to several seconds. 
Long term behavior, such as the the generation and execution of complex plans, the 
acquisition of a language, the formation and maintenance of a social role, go beyond 
the immediately modeled area and are facilitated by many successive cognitive acts. 
The neurobiological level is situated below the cognitive band and falls outside the 
scope of a functional theory of cognition. 
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2.2.2.1 Soar 
Newell has set out to find an architecture that—while being as simple as possible—is 
still able to fulfill the tasks of the cognitive level, a minimally complex architecture 
for general intelligence (i.e. with the smallest possible set of orthogonal mechanisms). 
To reproduce results from experimental psychology, so-called regularities (covering 
all conceivable domains, be it chess-playing, language, memory tasks and even 
skiing), algorithms would be implemented within these organizational principles. 

Newell’s architecture (Newell 1990; Laird, Newell and Rosenbloom 1987, Jones 
1996, Johnson 1997, Ritter 2002, see also the Soar Group’s homepage) is called Soar, 
an acronym that stands for State, Operator And Result and originated in his 
conceptions of human problem solving (Newell 1968, Newell and Simon 1972). Soar 
embodies three principles: heuristic search for the solution of problems with little 
knowledge, a procedural method for routine tasks, and a symbolic theory for bottom-
up learning, implementing the Power Law of Learning (Laird, Newell, Rosenbloom 
1986). The first version (Soar 1, 1982) was originally called TEX (Task 
Experimenter) and implemented by Newell’s graduate student John Laird to 
demonstrate a problem space (see below) that could be filled with knowledge by the 
user. The addition of production rule acquision by sub-goaling have lead to Soar 2 
(1983), and after Paul Rosenbloom joined the project in the same year, the resulting 
architecture was applied to model various problems in computing and cognition. 
Originally written in Lisp, development has switched to C, with an interface in 
Tcl/Tk. Soar has been continuously improved and has currently arrived at version 
8.4.5 (see Lehmann, Laird and Rosenbloom 2006). 

Problem Space Hypothesis 
Central to Soar is the notion of Problem Spaces. According to Newell, human rational 
action can be described by: 

- a set of knowledge states 
- operators for state transitions 
- constraints for the application of operators 
- control knowledge about the next applicable operator. 
Consequently, a problem space consists of a set of states (with a dedicated start 

state and final state) and operators over these states. Any task is represented as a 
collection of problem spaces. Initially, a problem space is selected, and then a start 
state within this problem space. The goal is the final state of that problem space. 
During execution, state transitions are followed through until the goal state is reached 
or it is unclear how to proceed. In that case, Soar reaches an impasse. An impasse 
creates and selects a new problem space, which has the resolution of the impasse as 
its goal. The initial problem spaces are pre-defined by the modeler.   

Problem spaces are also defined independently from Soar, for example in STRIPS 
(Fikes and Nilsson 1971), and generally contain a set of goals (with the top-level goal 
being the task of the system), a set of states (each of which is realized as a set of 
literals describing knowledge and world model) and a set of valid operators and 
constraints. 
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Memory organization 

 
Figure 2.1: Soar memory organization (simplified, see Laird et al. 1987, p. 12) 

Soar’s memory is made up of a working memory and a long-term memory component 
which contains productions (i.e. rules whose condition part may match on a working 
memory configuration, and whose antecedent specifies what happens whenever the 
rule matches). Production rules in Soar are called “chunks” and are based on Ops5 
(Forgy 1981). 

The working memory contains a context stack, the preference memory80 and a set 
of current attribute-value-elements (called “WME” ). WMEs are multi-valued; the 
attribute-value pairs of an object are called “augmentations”. Values may be 
constants, numbers, strings or objects. The working memory is not a short-term 
memory, because it is not limited in capacity or time. But unlike in long-term 
memory, knowledge elements may also be removed from working memory. 

The context stack holds those context objects that are currently part of the working 
memory: states (containing goals and problem spaces) and operators. All context 
elements are connected to goals, and all goals are part of a hierarchy. There can be 
multiple contexts active at a time. Whenever a context element loses its connection to 
the goal hierarchy (a tree with the top-most goal as the root), it is removed. (Removal 
of objects in the working memory is the task of a garbage collection module, the 
working memory manager.) The modification of the context stack takes place in the 
decision cycle. 

The preference memory is used to decide which WMEs get into the working 
memory or leave it. Preferences specify how likely it is for an object to become part 

                                                 
80 Sometimes, the preference memory is not considered to be a part of the working memory 
(Laird, Congdon and Coulter 1999), sometimes it is (Rosenbloom et al. 2001). 
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of the working memory. Preference memory is set by productions from the production 
memory. There are several types of preferences: acceptable, reject, require, prohibit, 
better, worse, reconsider, indifferent; each preference is an 8-tuple consisting of a 
relationship between a preference type, an object, an object type, a comparative object 
(optional, depending on the preference type), a goal, a space and an operator. 

Elaboration cycle and decision cycle 
The activity of Soar consists in alternations of the elaboration cycle and the decision 
cycle.81 During elaboration, the content of the working memory is updated according 
to the preferences. This happens by letting all production rules that are matching on 
the workspace content become active in parallel. (Production rules may match on all 
current goals, problem spaces and operators on the context stack.) The activity of 
rules may create new preferences in preference memory. When eventually no more 
rules match (the “firing” of productions has ceased), Soar has reached quiescence and 
the decision cycle is entered. 

The decision cycle has to get things going again—it triggers the execution of the 
current operator, if possible, and selects a new context object to put in on the stack, so 
new rules may fire in the next elaboration cycle. This selection of new context objects 
is done according to the preferences stored in preference memory. If preferences 
conflict or are not specific enough to allow for the decision on a new context object, 
an impasse sub-goal with a respective problem space is created, which has the 
resolution of this conflict as its objective. 

Soar knows several types of impasse: if two or more elements have the same 
preference, there is a “tie”. If there are no preferences left in preference memory, we 
have a “no change” situation. A “reject” impasse happens if all available preferences 
are rejected by others. If two or more elements are preferred at once, the impasse 
situation is a “conflict”. Using the impasse mechanism, Soar may reach every goal 
(constrained by the available knowledge). 

The actual problem solving work in Soar is delivered by the operators. Operators 
are algorithms that describe how to reach the next state; they are executed upon the 
filling of the context slots of a problem space. Soar does not develop new operators 
on its own; rather, it has a pre-defined library of more than 50 operators (implemented 
weak methods for planning, including means-end analysis, hill-climbing, alpha-beta 
search, branch and bound); the system may learn which one to apply in a given 
context.82 Particular implementations also feature strong planning methods, which are 
domain specific (see Hill et al. 1998, for an example).  

                                                 
81 The decision/elaboration cycle has been described in several variants: as two stages (Laird 
and Rosenbloom 1994; Lehman, Laird and Rosenbloom 1998), three stages (recognition, 
decision, action: Lewis 2000), four stages (sensor input, elaboration, motor output, decision: 
Hill 1999) and even in five stages (input, proposal, decision, application, output: Laird et al. 
1999).  
82 This represents a considerable extension over Newell’s and Simon’s earlier attempt at a 
universal problem solving mechanism, the General Problem Solver (1961) did, among many 
other restrictions, only have a single problem space and two operators: means-end analysis and 
sub-goaling to find a new operator. Also, it lacked the impasse mechanism to recognize missing 
knowledge (see also Newell 1992). 
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The extensive problem solving capabilities of Soar often make it the first choice 
for cognitive models involving complex problem solving (Ritter et al. 2002). On the 
other hand, Soar does discourage the implementation of further problem solving 
methods, and models have been criticized for not modeling human problem solving 
but putting the model’s pre-defined capabilities to work instead (Young 1999). 

Learning in Soar 
Learning in Soar is achieved by the creation of new production rules, a process called 
“chunking”. Chunking summarizes what has been learned during the resolution of an 
impasse and is a kind of “explanation based learning”. Whenever a result for the next 
higher goal is found, a new production (“chunk”) is created, which consists of a set of 
conditions and a set of actions. Here, conditions are those elements that had been 
tested before the impasse. (Actually, not all elements are included, but only those that 
contributed to the resolution; this is achieved using a dependency analysis, so the rule 
does not need all current conditions to fire in the future, but only the relevant ones. Of 
course, in the real world, dependeny analysis is error-prone. If dependencies are 
misconstrued, this leads to overgeneralization or undergeneralization of the new rule.) 
The action part of the new rule consists of those preferences that have been found as 
the resolution. 

The new chunks are placed in production memory immediately, and are available 
on the next elaboration phase, thus Soar's learning is intertwined with its problem 
solving. 

There is no forgetting mechanism for productions. 

Summary 
Perception and action are originally not integral parts of the Soar architecture—they 
are supplied by independent, asynchronous modules (EPIC, Chong and Laird 1997). 
These modules may write perceptual content directly into working memory, or read 
actuator commands from there (the feedback from actuators may be written back into 
working memory by the perceptual module). To make sure that the context does not 
inadvertedly shut down perception and action, there are special context independent 
“encoding” and “decoding” productions to translate between different levels of action 
and perception. Table 2.2: Assumptions of Soar (Laird, Newell, Rosenbloom 1987, p. 
58) gives a summary of the assumptions that are realized in Soar. 
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1. Physical symbol system 
hypothesis 

A general intelligence must be realized with 
a symbolic system  

2. Goal structure hypothesis  Control in a general intelligence is 
maintained by a symbolic goal system  

3. Uniform elementary-
representation hypothesis  

There is a single elementary representation 
for declarative knowledge  

4. Problem space hypothesis  Problem spaces are the fundamental 
organizational unit of all goal-directed 
behavior 

5. Production system hypothesis  Production systems are the appropriate 
organization for encoding all long-term 
knowledge 

6. Universal-subgoaling hypothesis  Any decision can be an object of goal-
oriented attention 

7. Automatic-subgoaling hypothesis  All goals arise dynamically in response to 
impasses and are generated automatically 
by the architecture 

8. Control-knowledge hypothesis  Any decision can be controlled by indefinite 
amounts of knowledge, both domain 
dependent and independent 

9. Weak-method hypothesis  The weak methods form the basic methods 
of intelligence 

10. Weak-method emergence 
hypothesis  

The weak methods arise directly from the 
system based on its knowledge of the task 

11. Uniform-learning hypothesis  Goal-based chunking is the general learning 
mechanism 

Table 2.2: Assumptions of Soar (Laird, Newell, Rosenbloom 1987, p. 58) 

There are hundreds of individual contributions to Soar in the form of domain specific 
models by other researchers; Soar has been extended and applied in many ways, for 
instance to model air traffic control (Bass et al. 1995, Chong 2001), to study visual 
cognition (Hill 1999), to control a fighter plane (ModSAF Tac-Air system, Tambe et 
al. 1995). Soar has also been implemented as a neurosymbolic system (Cho, 
Rosenbloom and Dolan 1993). 

Despite its many successful applications, criticism remains, especially concerning 
the many degrees of freedom offered by Soar. When confronted with the same task, 
different experimenters frequently seem to end up with different, equally plausible 
models (Young 1999); in this respect, Soar is perhaps at least as much an AI 
programming language (Ritter, Baxter, et al. 2002) as it is a model of human 
cognition. 

2.2.2.2 ACT-R 
John Anderson’s ACT theory (Anderson 1983, 1990; Anderson and Lebiere 1998, see 
also ACT-R Group’s homepage) is—next to Soar—currently the most extensively 
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covered and applied model in the field of symbolic cognitive architectures, and 
probably the one best grounded in experimental psychological research literature 
(Morrison 2003, p. 30). ACT is an acronym that supposedly stands for the Adaptive 
Character of Thought (it meant the Adaptive Control of Thought earlier, has also been 
reported to abbreviate Atomic Components of Thought (Morrison 2003) and perhaps, 
it just refers to Anderson’s Cognition Theory). Just as Soar, ACT-R is based on 
production rules, but unlike Soar, ACT-R (until version 5) does not fire them in 
parallel, and it allows for real-valued activations (instead of a binary on-off). Also, 
while productions in Soar may only vote on what is done by setting preferences, 
productions in ACT-R directly govern what happens by specifying actions in the 
working memory.  

History of ACT-R 
The theory has its roots in a model of human associative memory (HAM, Anderson 
and Bower 1973), which itself has been an extension of FRAN (Free Recall in an 
Associative Net, Anderson 1972). HAM was an attempt to provide a descriptional 
language of mental content, made up of hierarchies of nodes in a semantic network 
and featuring associative recall. Influenced by Newell’s work on modelling control 
structures with production rules (Newell 1972, 1973), Anderson later added a 
procedural memory based on production rules, which led to the first formulations of 
ACT (see Anderson 1996). Different versions of the ACT theory earned successive 
descriptional letters, with the first one being ACT-A in fall 1974. By 1976, the theory 
had already arrived at ACT-E (Anderson 1976). ACT-F included an extensive model 
of production acquisition. The successor of ACT-F was supposed to conclude the 
ACT family of models. Because it introduced major changes, such as the switch from 
a step-based model of activation spreading to a continuous time model, it was named 
ACT* (Anderson 1978, 1983). 

An implementation of ACT* is part of GRAPES (Sauers and Farrell 1982). After 
refining the declarative structure, Anderson released the implementation PUPS (for 
Penultimate Production System, Anderson and Thompson 1989). 

Revisions and extensions of ACT*, which have put the theory closer to a neural 
realization and which also included a new conflict resolution mechanism, led to ACT-
R (Anderson 1993). The ‘R’ abbreviates Rational and refers to Anderson’s rational 
analysis (Anderson 1990, 1991). ACT-R underwent a succession of implementations 
(ACT-R 2.0, 1993; ACT-R 3.0, 1995). With ACT-R/PM (Byrne and Anderson 1998; 
Byrne 2001), perceptual and motor facilities were introduced into the model by 
incorporating research in the cognitive architecture EPIC (Kieras and Meyer 1997) 
and using a visual interface (Anderson, Matessa and Lebière 1997). The additional 
components ran in parallel to the core ACT model and were incorporated into ACT-R 
4.0 (1998) and its successors. Meanwhile, a large community using ACT-R for 
cognitive modeling had emerged, there were front-ends for different operating 
systems (Bothell 2001; Fincham 2001), and by September 2004, about a hundred 
published models had been developed, covering a wide range of cognitive phenomena 
(Anderson et al., 2002). 

ACT-R 5.0 (2001) extended the sensory-motor facilities and became quite 
modular; it offers different memory sub-systems (buffers) for goals, visual processing 
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(including a “what” and “where” distinction, Ungerleider and Mishkin 1982), 
auditory processing, vocal production and manual action—which are meant to be 
somewhat like the “slave modules” of working memory suggested by Baddeley 
(1986). 

Chunks 
A working memory element in ACT-R is called “chunk”. Instead of the 
“augmentations” of WMEs in Soar, ACT-R chunks have slots, which are associated 
to an attribute—an external object, a list or another chunk. A real-valued link 
facilitates this connection, so vague attributes become possible. Usually, there are 
three to four slots and a maximum of seven—to encode lists with more than seven 
elements, chunks have to be organized into a hierarchy.83 To encode more than seven 
facts about a concept, ACT-R also features type-inheritance: each chunk may be 
connected by an “is-a”-link to a super-concept (type), from which the chunk inherits 
additional features. Let me elaborate a little on ACT-R’s representations here, because 
this will prove helpful when looking at the way representation is handled by the Psi 
architecture later on. 

 

 
 
Figure 2.2: An example chunk structure (see Schoppek and Wallach 2003) 
The example ( 

Figure 2.2) expresses that ‘three’ (which is an ‘integer’ and refers to the integer value 
3, plus ‘four’ (which is an ‘integer’ and refers to the integer value 4) equals ‘seven’ 
(which is an ‘integer’ and refers to the integer value 7), which is an ‘addition fact’. 

                                                 
83 The ‘magical number seven’ (plus/minus two) is often mentioned when discussing 
constraints on the number of elements that can be addressed at a time in working memory 
operations. This number originated in a classical work by Miller (1956). Later work has been 
more conservative and tends to put the limit at three to four indepentend elements (Crowder 
1976; Simon 1974). 
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Chunk types are defined by a name and a list of slots; they are noted in the form  
(CHUNK-TYPE <name> <slot 1> <slot 2> ... <slot n>) 

The slots of a chunk receive their semantics from the type; the example of a chunk 
structure above can simply be specified by: 

(CLEAR-ALL) 
(CHUNK-TYPE addition-fact addend1 addend2 sum) 
(CHUNK-TYPE integer value) 
(ADD-DM (fact3+4 
    isa addition-fact 
    addend1 three 
    addend2 four 
    sum seven) 
 (three 
    isa integer 
    value 3) 
  (four 
    isa integer 
    value 4) 
 (seven 
    isa integer 
    value 7) 

Here, first the two types ‘addition-fact’ (with the attributes ‘addend1’, ‘addend2’ and 
‘sum’) and ‘integer’ (with the attribute ‘value’) are defined. Then, the addition-fact 
‘fact3+4’ is established. It inherits its slots from the type ‘addition-fact’ and binds 
them to the chunks ‘three’ (for the attribute ‘addend1’), ‘four’ (for the attribute 
‘addend2’) and ‘seven’ (four the attribute ‘sum’). Finally, the three integer elements 
are defined; each of them inherits their ‘value’ slot from the type ‘integer’ and binds it 
to a number. This tiny example is just meant to serve as an illustration of how chunks 
form a hierarchical semantic network (an introduction into ACT-R programming is 
given by Lebière 2002; Schoppek and Wallach 2003). This network of chunks makes 
up the declarative memory of an ACT-R model.  

ACT* and ACT-R have both claimed to bridge the gap between neural-like 
implementation and symbolic computation. The connectionist implementation of 
ACT-R, ACT-RN (Lebière and Anderson 1993), is an attempt to substantiate that 
claim. Here, the declarative memory works as an associative memory: chunks are 
retrieved based on their name or some of their slot values. The implementation makes 
use of a simplified Hopfield network (Hopfield 1984) with real values. Each slot and 
chunk name is a “pool of units”. There are no connections between the slots—only 
the chunk name pools (“headers”) are associated to other units. (Unlike in a Hopfield 
network, retrieval here does not utilitze an energy minimizing approach, but works 
simply by backward-forward mapping between slots and headers: depending on the 
given slots, headers are activated, and then their activation spreads to the missing 
slots.) To limit the number of links, in the connectionist implementation, the 
declarative memory is split into several areas. Within each area, all chunks are fully 
connected to each other. 

ACT-RN has been used in several cognitive models, but has been abandoned 
nonetheless, because it was considered too unwieldy for the intended applications—
the development of current ACT-R versions focuses on symbolic implementations. 
Even so, the retrieval of chunks partially follows a sub-symbolic paradigm: spreading 
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activation. To choose a chunk from declarative memory, there is an initial matching 
process against given conditions, and if there are conflicts, the chunk i with the 
highest activation A is selected. This activation is computed as 
 i i j ji

j

A B w s= +∑  (2.1) 

where Bi is the base level activation of the chunk (defined depending on previous 
usage) and the sum reflects the associative activation that originates in sources of 
spreading activation and is transmitted through neighboring chunks j (wj being the 
activation of these, and sji the strength of the link from these chunks to the current 
chunk i). The activation available from a source diminishes logarithmically depending 
on the number of links it spreads into (fan effect). 

 
The probability of retrieving a chunk is determined by 
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with τ being a threshold value and s some random noise to make retrieval 
stochastic. 

The time to retrieve a chunk (latency) has been adjusted to match experiments 
with human subjects and is set at 
 ; 0.35iA

iT Fe F eτ−= ≈  

Productions 
In addition to the declarative memory, ACT-R proposes a procedural memory. Such a 
distinction has for instance been suggested by Squire (1994), but is far from being 
undisputed in the literature of psychology (Müller 1993). Procedural memory consists 
of productions, which coordinate the cognitive behavior using a goal stack that is laid 
out in working memory. 

 
 
Figure 2.3: ACT-R memory organization (simplified, see Anderson 1983, p. 19) 

State changes in the working memory and operations on the goal stack are triggered 
by the firing of productions. If several productions match the current goals and 
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knowledge at the same time, a conflict resolution mechanism is invoked, which 
attempts to fire the production that has the highest utility with respect to the given 
goals. 

Anderson uses chunks and productions to encode three kinds of representations 
(Anderson, 1983, p. 47): temporal strings, spatial images and abstract propositions. 
These representations are somewhat similar to scripts (Schank and Abelsson 1977) 
and schemas (Minsky 1975), but unlike in scripts, lists formed by elements of a chunk 
are very much restricted in length, and unlike in schemas, the links are directed, i.e. 
the inverse direction may have a different link weight or no link at all, so that retrieval 
based on spreading activation does not work equally well in all directions. This 
asymmetry is empirically evident in human cognition: “One can only go from the 
instantiation of the condition to the execution of action, not from the action to the 
condition. This contrasts with schemata such as the buyer-seller schema, where it is 
possible to instantiate any part and execute any other part. The asymmetry of 
productions underlies the phenomenon that knowledge available in one situation may 
not be available in another. Schemata, with their equality of access for all 
components, cannot produce this. Also, in many cases the symmetry of schemata can 
lead to to potential problems. For instance, from the fact that the light is green one 
wants to infer that one can walk. One does not want to infer that the light is green 
from the fact that one is walking. No successful general-purpose programming 
language has yet been created that did not have an asymmetric conditionality built in 
as a basic property.” (Anderson 1983, p. 39) 

Buffers 
The working memory is divided into a set of buffers. In ACT-R 5.0, these are 

- the goal buffer, which represents the current position in a task and preserves 
information across production cycles (in ACT-R 6.0, there are multiple goal 
buffers) 

- the retrieval buffer, where activation computations take place and information 
retrieved from declarative memory is held 

- the visual buffers: location and visual objects; attention switches correspond 
to buffer transformations 

- the auditory buffers: analogous to visual buffers 
- the manual buffers, which implement a theory on manual movement 
- the vocal buffers, which provide a less developed interface for vocal 

production. 
The antecedent part of a production specifies a goal and additional conditions 

together with a respective buffer, where a test for a match of these conditions takes 
place. The consequent of a production consists of a set of actions, which are 
transformations that have to be applied to individual buffers. 

Production Cycle 
The matching, selection and execution (firing) of productions defines the production 
cycle. In each cycle, only one production may fire. Conversely, only a single object at 
a time may be held in each workspace buffer, so the operations in ACT-R’s core are 
necessarily sequential. This is meant to mimic the bottleneck of higher cognitive 
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functions (Pashler 1998). Processes within the modules associated to the buffers (for 
instance, within the visual module) may nevertheless be working in parallel. 

 During matching, the condition part of each production is compared with the state 
of the current goal on the stack. On a successful match, the production enters the 
conflict set; thus, the current goals always set the context of the activity of the system. 

The selection mechanism aims at finding the best production in the conflict set, 
based on matching them with facts from declarative memory. 

The second mechanism to resolve conflicts between productions is based on their 
utility with respect to the given goal: 
 i i iU PG C s= − +  (2.3) 

Pi is the success probability of the production i, G is the gain associated with the 
goal, Ci is the cost associtated with the production, s specifies noise. The probability 
of success is estimated as 
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To account for stochasticity, the probability of choosing a matching production is 
adjusted using 
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with t being a constant; the sum depends on the utility of all other available 
matching productions. 

 During the execution of the winning production, either the goal is modified, a new 
goal is put on the stack, a goal is achieved or discarded (and thus popped from the 
stack) or a previous goal is restored. ACT-R does not feature a goal hierarchy (such as 
Soar), but can emulate this to some extent by pushing sub-goals on the stack in the 
right order. Because of this, sub-goals are not automatically removed when a high-
level goal is reached. 

Learning 
Learning in ACT-R takes place to adapt the system to the structure of its environment 
(Anderson and Schooler 1991). This happens either explicitly via the creation of new 
elements (chunks and productions) or implicitly, by adjusting activations of 
knowledge elements (Anderson, Bothell, Byrne, Douglass, Lebiere and Qin 2004). 

 Declarative knowledge encodes either environmental knowledge (in most models, 
this seems to be hand-coded), or is created by the system whenever a goal is taken 
from the stack (i.e. is achieved). The result is a chunk that is usually compiled from 
the statement of the given task and its solution. 

The explicit learning of productions is based on a special type of chunk: 
dependencies.  

Whenever a task has been fulfilled using a complex process, a dependency goal 
may be created. Depencency goals are directed at understanding the solution. When a 
dependency goal is taken from the stack, a new production is created. This production 
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encodes the solution, so that next time the system is confronted with the task, the 
solution may be recalled immediately.  

 

 
 
Figure 2.4: Learning using dependency chunks (see Taatgen 1999, p. 135) 

Implicit learning affects both the declarative and the procedural memory. Firing 
strengthens productions by increasing their base level activation, and chunks in 
declarative memory are strengthened by usage as well. This happens according to 
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where tj is the time that has passed since the j th usage of the item; d is a constant 
(usually set to 0.5). 

Summary 
The ACT theory allows the reconstruction of a wide variety of cognitive tasks. One 
notable early example was the application of recursion in programming (Anderson, 
Farell and Sauers 1984; Anderson, Pirolli and Farell 1988); Anderson subsequently 
applied the results of his model of knowledge representation to intelligent tutoring 
systems (Anderson, Boyle, Corbett and Lewis 1990; Anderson, Corbet, Koedinger 
and Pelletier 1995; Anderson and Reiser 1985), which successfully improved the 
learning rate of students. Since then, every year has seen a wide variety of new 
cognitive models supplied by a vital community of ACT-R users. The immense 
success of ACT stems from the fact that it allows for testing its cognitive models by 
comparing computation times with those of human subjects, without making more 
than a few very basic assumptions on the speed of activation spreading. 

Anderson maintains that ACT-R is a hybrid architecture, because it combines the 
explicit learning of discrete memory structures with Bayesian reasoning supplied by 
its associative memory structures. However, Anderson’s semantic networks are 
strictly localist,84 and distributed representations only play a role in external modules, 
which are not an integral part of the architecture. Nevertheless, Anderson’s group 
boldly claims that ACT is also a theory on how cognition is facilitated in the brain, 
insofar as they map individual parts of the architecture to functional areas of our 
favourite organ (Figure 2.15). This mapping also corresponds to assumptions about 
execution time in the model, for instance, the firing of a production (50ms) is said to 

                                                 
84 Ron Sun (Sun 2003, p. 5) characterizes sub-symbolic units as not being individually 
meaningful. In this sense, the distinction between symbolic and sub-symbolic systems does not 
allude to whether link weights are strictly binary or real-valued, but whether the links 
implement a distributed representation of concepts. 
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correspond to activation spreading from the cortex to the basal ganglia and back 
(Lebière, Wallach and Taatgen 1998).85 

 
Figure 2.5: Sketch of ACT-R structures as mapped onto the brain (see Anderson et al. 
2004) 

Yet, even though it can be fitted to experiments with human subjects, it is not clear if 
the production paradigm literally depicts neural activity or just marks a convenient 
way of programming cognitive models (Gardner 1989, p. 146). Knowledge in ACT-R 
models is usually not acquired step by step by gathering experience in an environment 
(Hesse 1985), but pre-programmed by the experimenter; the individual knowledge 

                                                 
85 While the published literature on ACT-R makes indeed the claim that the firing of 
production rules refers to the activity of the basal ganglia, it is probably not reasonable to take 
this literally. Even John Anderson, when confronted (at a 2006 workshop during the 
International Conference of Cognitive Modeling) with the fact that lesions to the basal ganglia 
do not seem to impair processes like the retrieval of past tense, responded: “Damage to the 
basal ganglia does not seem to result in results as severe as you would expect them based on 
the theory. What this means, to the theory, is that there seem to be other pathways and things 
humans can fall back on, like declarative knowledge. There may be other pathways that can 
pass that information; the neural connections are so numerous, clearly, it is not a good idea to 
bet all your money on the basal ganglia. This is obviously not the whole story.” 



 
 

 
 
 

 133 

units are rarely grounded in environmental interaction. Especially the chunk types are 
usually pre-defined by the experimenter. Indeed, like Soar, ACT-R has sometimes 
been likened to a programming language (instead of being a model of cognition), 
because if offers so many degrees of freedom on how cognitive functions and actual 
behavior may be implemented; ACT lies somehow inbetween psychology, artificial 
intelligence and computer science (Jorna 1990, p. 119). 

The ACT-R architecture has no representation for affective variables (Morrison 
2003, p. 28), even though approaches exist to attach additional modules for that 
purpose to the architecture (Belavkin 2001). This means that knowledge in ACT is 
encoded independently from motivational and emotional parameters, which seems to 
be inadequate (Hoffmann 1990). Furthermore, knowledge has to exist in declarative 
form to have an influence of the behavior of the system. 

2.2.2.3 Other symbolic cognitive architectures 
While ACT and Soar do not only receive most attention in the published literature, 
they also seem to be the most mature of the existing architectures. Nonetheless, there 
exist various further attempts at modeling human cognition. Most of them concentrate 
on isolated capabilities, such as memory or perception, but several of them provide 
extensive models. 

 
Different from ACT-R and Soar, CAPS (Concurrent Activation-Based Production 
System) (Thibadeau, Just and Carpenter 1982), like its successor 3CAPS (Capacity 
Constrained CAPS) (Just and Carpenter 1992) does not model cognitive activity as 
being goal oriented, but deals mainly with comprehension, and its early benchmarks 
were tasks like reading. Using the comprehension paradigm, CAPS provides simple 
problem solving and decision making capabilities. 

CAPS is designed as a hybrid model that combines symbolic production rules with 
an activation based working memory, where activations reflect degrees of belief; the 
firing of production causes a flow of activation. Unlike in ACT, there is unlimited 
parallelism between firing rules, and no conflict resolution mechanism exists. Instead, 
working memory capacity constraints ensure that the system models conflicts and 
forgetting. 

Using 3CAPS, mental animation tasks (Hegarty 2001) and the performance of 
patients with lesions to the prefrontal cortex during solving the Tower of Hanoi 
puzzle (Goel, Pullara and Grafman 2001) have been modeled. 

As a further development, 4CAPS (Just, Carpenter and Varma 1999) offers a 
detailed modular structure that is meant to correspond to particular brain areas, such 
as Broca’s area, Wernicke’s area, and the dorsolateral prefrontal cortex; experiments 
with 4CAPS are designed to predict results from fMRI and PET scannings of these 
areas for given tasks. 

Another comprehension oriented approach is the Construction-Integration (C-I) 
theory of Walter Kintsch. C-I is based on a theory of sentence processing by Kintsch 
and the linguist Teun A. van Dijk (Kintsch and van Dijk 1978); Kintsch has since 
argued that the comprehension process provides a general paradigm for cognition 
(Kintsch 1998). 
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The fundamental representational unit in C-I is a proposition, not a production. It 
is defined as the smallest unit of meaning to which a truth value can be attached. 
Since C-I mainly deals with language comprehension, propositions usually 
correspond to a component of a sentence, such as an individual phrase or a clause. 
Propositions are represented as a predicate and associated arguments; because 
propositions may share arguments, they form an associative network. The strength of 
the associations between propositions depends on the number of shared arguments. 

Unlike ACT-R, where goals set the context of all activity, C-I is all about goal 
formation. The activity in C-I consists of iterations of cycles: 

- In the first stage, rules that are approximate and partially inaccurate are 
constructed based on information available from the environment (bottom-
up). 

- The second stage integrates these rules by downward spreading activation, 
which is seen as a constraint satisfaction process. 

The comprehension process consists in several repetitions of these cycles.86 C-I 
uses textual input (discourse). This has been generalized in LICAI (LInked model of 
Comprehension-based Action planning and Instruction) (Kitajima and Polson 1995, 
1997). Here, the two stages model the comprehension of an HCI task; the input is not 
a text, but a situation a user finds herself in when using a graphical user interface, and 
later on in CoLiDeS (Comprehension based Linked model of Deliberate Search) 
(Kitajima, Blackmon and Polson 2000), an HCI tool for the improvement of websites. 

Because C-I theory and LICAI do not need pre-specified goals to work, they can 
describe explorative behavior in HCI tasks better than ACT-R, but they are focused 
on text-comprehension. They have no capabilities for learning and problem-solving. 

 
A particularly interesting shot at problem solving is Prodigy (Minton 1991; 
Carbonell, Knoblock and Minton 1991). Prodigy is an architecture that models 
cognition, albeit one that does not attempt to mimic human behavior in psychological 
experiments, but attempts to demonstrate general intelligent behavior.  

Prodigy makes the following assumptions: 
1. A Unified Architecture of Cognition is required (Newell 1976). 
2. Maximum rationality hypothesis: depending on the current goals and the 

available knowledge, the system should aim at the course of behavior that 
maximizes the chances of success. 

3. Deliberative reasoning hypothesis: learning should be based on deliberation, 
to direct the activity towards maximizing utilities. 

4. Glass box hypothesis: all knowledge is declarative and uniformly accessible 
throughout the system. 

5. Multiple learning methods: unlike in Soar, there are many different learning 
paradigms. 

6. Environmental consistency assumption: changes in the environment are 
substantially slower than the processes that facilitate reasoning and learning 

                                                 
86 The model of perception featured in C-I is very much like the principle of hypothesis based 
perception (Hypercept) as suggested by Dörner (Dörner 1999, pp. 149). 
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within the system, so the environment is relatively stable in comparison to the 
states of the cognitive model. 

Prodigy implements problem solving as a search through a problem space. Nodes 
in this space comprise sets of goals and world states (represented in first-order logic); 
to direct and constrain the search, additional control rules may be given. The problem 
solver is complemented with a planner and several learning methods. Prodigy has 
successfully been applied in blocksworld domains, process planning, STRIPS, matrix 
algebra manipulations and robotic path planning. Still, Prodigy is far from being a 
complete model of cognition, some constraints limit its application: for instance, it 
always assumes a complete description of the environment (i.e. knowledge is assumed 
to be complete). 

 
Most cognitive architectures, however, have been designed as modeling tools in 
Human Computer Interaction (HCI) tasks. To name a few examples: 

The Architecture for Procedure Execution (APEX) (Freed 1998, Freed et al. 2002) 
uses AI tools to model human behavior on a task level. APEX consists of an action 
selection component based on the planner RAP (Reactive Action Package, Firby 
1989), which supplies goal hierarchies and allows for the pursuit of multiple 
concurrent or interdependent tasks, and a set of resources, which represent vision, 
cognition and motor action. Knowledge is represented as productions and expressed 
as PDL (Procedure Definition Language) statements. This allows defining tasks that 
have been abstracted from a domain by the experimenter efficiently, but does not 
offer problem solving capabilities. APEX has been used to implement an air-traffic 
control simulation. 

The GOMS paradigm (for Goals, Operators, Methods, and Selection rules) and 
the MHP (Model Human Processor), which have originally been developed by Card, 
Moran and Newell (1983), have sparked a whole family of architectures. Like in Soar, 
all action in GOMS is goal oriented. Elementary actions are called operators, which 
are organized into methods. Operators are associated to sensor and motor elements, or 
they may call other methods, which establishes sub-goals: the result is a goal 
hierarchy. If multiple methods are available to achieve a goal, the conflict is resolved 
by resorting to selection rules. 

GOMS has subsequently been incorporated into Cognitive Complexity Theory 
(CCT) (Kiras and Polson 1985). CCT provides the theoretical foundation of the 
GOMS analysis tool NGOMSL (Natural GOMS Language).  

The goal of EPIC (Executive Process/Interactive Control) (Kieras and Meyer 
1995) comprises the provision of access to the environment for cognitive models; 
EPIC provides a model of perceptual and psychomotor processes—what it considers 
to be the periphery of cognition. Originally based on the Model Human Processor 
(Card, Moran, Newell 1983), EPIC consists of multiple interconnected processors—
rule-based units—that work in parallel. These processors are under the control of a 
central executive. EPIC does not provide cognitive learning or problem solving 
capabilities, but it is well suited for the integration with other models that do, such as 
Soar and ACT-R.  
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One of EPIC’s extensions is GLEAN (Kieras 1999), which may incorporate 
GOMS descriptions of tasks. 

EPAM (Elementary Perceiver and Memoriser) is a classic model for a broad range 
of memory processing tasks (Gobet, Richman, Staszewski and Simon 1997). EPAM 
focuses on the relationship between concept formation and (high level) perception, 
using a discrimination network. Memory in the EPAM models is made up of chunks, 
meaningful groups of basic elements. The chunks are associated to nodes that are 
linked into a network, where links represent the result of tests that have been applied 
to objects during perception. If it is possible to match chunks with perceptual content, 
the resolution of the chunk is increased (familiarization) by adding more details to it; 
if the most similar chunk mismatches, then a new node is added and linked, based on 
the mismatched feature (discrimination). EPAM has been used to model a number of 
psychological regularities of human subjects, including learning of verbal material 
(Feigenbaum and Simon 1984) and expertise in number processing (Richman, 
Staszewski and Simon 1995).  

A more recent offspring of EPAM is CHREST (Chunk Hierarchy and REtrieval 
Structures), an architecture that has been extensively used to model the cognitive 
processing of chess players (de Groot and Gobet 1996; Gobet and Simon 2000).  

The Human Operator Simulator (HOS) (Wherry 1976; Glenn, Schwartz and Ross 
1992) integrates a task network with micro motor skills, cognitive and sensory 
components that can simulate human performance when using computer displays (for 
instance in air-traffic controltasks). HOS is based on a network of discrete subtasks 
(Siegel and Wolf 1962; 1969). 

HOS has been partially incorporated into the simulation tool MicroSAINT (Micro 
Systems Analysis of Integrated Network of Tasks) (Laughery and Corker 1997) and 
COGNET (COGnition as a NETwork of tasks) (Zachary, Ryder and Hicinbotham 
1998), another member of the GOMS family. COGNET features a model of the 
execution of multiple tasks in parallel, using an attention switching mechanism, and 
has been applied to demonstrate vehicle tracking  (Zubritsky and Zachary 1989) and 
to model air traffic control (Seamster et al. 1993). 

2.2.3 Alternatives to symbolic systems: Distributed  architectures 

Many of the approaches discussed in the previous section may be called “semi-
classical” architectures. They are not restricted to discrete representations, but make 
use of Bayesian reasoning, fuzzy logic and spreading activation networks, some 
cognitive architectures, like ACT-RN, C-I, Clarion (Sun 2003) and SAMPLE (Hanson 
et al. 2002) integrate neural networks. These methods tend to increase the power and 
flexibility of the systems, while often still allowing for manually engineered 
knowledge units and easy understanding (by the experimenter) of the content that has 
been acquired by learning or perception. For most of these models, production rules 
are the central instrument of representation.  

Despite the benefits of symbolic architectures and their semi-symbolic extensions, 
there are some criticisms. Symbolic cognitive architectures might be just too neat to 
depict what they are meant to model, their simple and straightforward formalisms 
might not be suited to capture the scruffiness of a real-world environment and real-
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world problem solving. For example, while the discrete representations of Soar and 
ACT are well suited to describe objects and cognitive algorithms for mental 
arithmetics, they might run into difficulties when object hierarchies are ambiguous 
and circular, perceptual data is noisy, goals are not well-defined, categories are vague 
and so on. In domains where the extraction of suitable rules is practically infeasible, 
neural learning methods and distributed representations may be the method of choice, 
and while this is often reflected in the perceptual and motor modules of symbolic 
architectures, is is not always clear if their application should end there. 

The “neat and scruffy” distinction has been described by Robert Abelson (1981), 
according to whom it goes back to Roger Schank. It alludes to two different families 
of AI models: those favoring clean, orderly structures with nicely provable properties, 
and those that let the ghosts of fuzziness, distributedness, recurrency out of their 
respective bottles. While the term “New AI” is sometimes used to refer to fuzziness87, 
AI does not really consist of an “old”, neat phase, and a “new”, scruffy era. Even in 
the 1960s and 1970s, people where designing logic based systems and theorem 
provers (for instance McCarthy and Hayes 1969; Nilsson, 1971), and at the same 
time, others argued for their inadequacy (for instance Minsky and Papert 1967), 
suggesting less general-purpose approaches and the use of distributed systems with 
specific functionality instead. 

In cognitive modeling, there has been a similar divide between rule-based systems 
with clean organizational principles (like Soar and ACT-R) on the one hand, 
philosophically close to Fodor and Pylyshyn (1988) and Jackendoff (2002), and 
distributed parallel processing architectures (Rumelhart and McClelland 1986) on the 
other. It has often been argued since that it is not only possible to bridge this gap, but 
also necessary to integrate both views into systems that can be both localist and 
distributed at the same time (see Dyer 1990, and Sun 1993). The resulting systems, 
however, will probably not be neat and scruffy at the same time. While they will be 
able to emulate neatness to some degree, they will be inherently even scruffier! And 
maybe that is a good thing, since real world problems are usually characterized by 
scruffiness as well: knowledge tends to be incomplete, approximate and 
contradictory, outcomes of events tend to be uncertain, situations are often far from 
being clean-cut. Thus, a system accumulating knowledge from a real-world 
environment needs to pack scruffy representations and problem solving approaches 
under its hood, although it might present a neat surface. 

The design of a cognitive architecture based on chunks, rules and modules 
amounts to a search for the minimal orthogonal requirements of human-like 
intelligence by carefully and incrementally adding complexity. When nature came up 
with designs for our brains, it had perhaps chosen the opposite path: it defined a large 
set of highly interconnected elements and extreme inherent complexity, and added 
just enough global organizational principles and local constraints (along with a 
                                                 
87 New AI as opposed to Good Old-fashioned AI has been used to characterize lots of things: a 
departure from symbolic methods and an embrace of sub-symbolic computation, the inclusion 
of sociality, the use of grounded representations, among many others. Still, most of the ideas 
that are now subsumed under “New AI” have been formulated in the early days of AI, although 
neglected in practical research. 
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developmental order) to ensure that the behavior of the system would be narrowed 
down to produce the feats of cognition when confronted with the right kind of 
environment. (The environment might be crucial, because the individual genesis of 
cognitive capabilities depends on the adaptation to stimuli and tasks as they present 
themselves to an organism—a notion that has been voiced in the situated cognition 
theory by Suchman, 1987 and Clancey, 1994). The course of the researcher might 
thus consist in the identification of those organizational principles and constraints, for 
instance by experimenting with distributed processing architectures that have been 
connected to the right kind of environment. It may be that the mind is best not 
understood as a certain assembly of functionality, but as an emergent product of a 
homeostatic system with a defining set of organizational constraints. The complexity 
and parsimony of cognitive functions might be the result of the activity of this system 
and the application of the constraints, a model of the mind would not consist of 
hundreds of perceptual subsystems, dozens of memory types and representational 
formats and a very large number of algorithms specifying cognitive behavior, such as 
problem solving, spatial cognition, language comprehension and memory 
maintenance. Instead, a minimal description of the mind would be a description of the 
principles that give rise to it; its story would be told in terms of a set of several classes 
of homogenous neural circuits, the principles describing the global arrangement of 
clusters of such elements, and a rough layout of neural pathways that define the initial 
connectivity of the system. Dreyfus and Dreyfus have summarized the conflict 
between the two modeling approaches: “One faction saw computers as a system for 
manipulating mental symbols; the other, as a medium for modeling the brain” (1988). 

Methodologically, this latter view suggests to depart from the specification of 
formalisms that literally treat cognitive tasks as something to be addressed with 
description languages and well-defined functors that operate on the descriptions along 
pathways plastered with carefully proven properties, it suggests to abandon neatness 
on the level of description of cognitive functioning and instead concentrate on 
specifying principles of neural, distributed cognition. 

Having said that, I think that the state of current development of distributed 
architectures does not seem to make the symbolic approaches obsolete. While 
numerous successful models of cognitive functioning have been realized, they usually 
address isolated capabilities, such as sensory processing, memory or motor activity. 
To my knowledge, distributed processing architectures do not cover the breadth of 
capabilities addressed by the unified architectures of symbolic and semi-symbolic 
origin yet. While it may be theoretically possible to simulate symbolic processing 
with a connectionist model, perhaps it is not practically possible to do so (Anderson et 
al. 2004). 

 
While the connectionist movement in cognitive modeling has started out in the mid 
1980s with John McClelland’s and Paul Rumelhart’s proposal of parallel distributed 
architectures (Rumelhart and McClelland 1986), the attempts to model the breadth of 
cognition using neural nets are few and limited. 

ART (Adaptive Resonance Theory) by Stephen Grossberg (1976) is one of the 
earlier attempts to realize a broad model of cognition entirely with a neural net design. 
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Like many of these approaches, it is not really a unified architecture, but a family of 
models (Krafft 2002). ART includes working memory, perception, recognition, recall, 
attention mechanisms and reinforcement learning. ART has been introduced in 1976, 
and development has continued at Boston University. 

One of the main contributions of ART consists in its solutions to the stability-
plasticity problem posed by artificial neural networks: if such a network changes its 
weights continuously to reflect newly acquired knowledge, it may lose previous 
knowledge; if it does not, it has difficulty to adapt to new situations. ART proposes 
two layers of networks that make up its working memory: an input level (bottom), 
which responds to changing features and objects that the system directs its attention 
to, and an output level (top) that holds categorical knowledge related to the concepts 
in the input level. The directed links that establish the connection between the two 
layers are modulated by a long-term memory (which is made up by the link weights 
between elements); short-term memory consists in the momentary activations moving 
through the system. With this arrangement, ART simulates a bottom-up/top-down 
model of perception: The top-down processes define what the input level is looking 
for by modulating its attention. Irrelevant stimuli are ignored while mismatches 
trigger the attention of the system. The matches between bottom-up and top-down 
systems create a reciprocal feedback. Two subsystems, one governing attention, one 
providing orientation, control the activity. The attentional subsystem consists of gain 
controls that match the bottom-up activation with top-down expectations; the 
orientation subsystem watches out for mismatches. If it discovers a new situation (i.e. 
something not covered by the expectations), it triggers the orientation behavior that 
attempts to find a more appropriate recognition code. 

Learning in ART is facilitated by adjusting frequently activated links—those that 
are part of the resonance between the layers. 

ART has been applied in simulating illusions in visual perception, modeling visual 
object recognition, auditory source idenfication and the recognition of variable-rate 
speech (Grossberg 1999), but does not capture procedural tasks, such as continuous 
persistent behaviors or motor control. 

To overcome the difficulties with expressing propositional knowledge in a neural 
architecture, several connectionist production systems have been designed (see 
Touretzky and Hinton 1988, Dolan and Smolensky 1989). Knowledge based artificial 
neural networks (KBANN) have been suggested by Towell and Shavlik (1992, 1994), 
which transform sets of clauses of first order logic into simple feed-forward networks 
that map truth values to activation states and can be modified using backpropagation 
learning, thus allowing to model noisy and heterogenous data starting from 
incomplete and possibly contradictory rule-based descriptions. 

Various models have been developed to model the distributed representation of 
discrete content, for instance Sparse Holographic Memory (Kanerva 1994); 
Holographic Reduced Representations (HRRs; Plate 1991) and tensor product 
representations (Smolensky 1990). The latter have been extended into the ICS 
architecture (Smolensky and Legendre 2005), which is based on Optimality theory 
and Harmonic Grammars (Prince and Smolensky 1991, 1997, 2004). Representations 
in ICS are organized by synchronized oscillations, which provide binding between so-
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called “roles” (categories) and “fillers” (the distributed content of the concepts) and 
can be determined using a tensor product. Within ICS, it is possible to express sets, 
strings and frames, as well as categorial hierarchies (using recursive role-vectors). 

A perceptual model by Wyss, König and Verschure (2004) explains the genesis of 
place cells in the perceptual cortical areas of rats. According to their model, 
abstractions like places and objects are representations that result from the encoding 
of low-level stimuli so that their entropy is reduced. Using just sparseness and 
stability as organizational principles of neural elements, they could replicate the 
experimental findings on place cells in computer experiments. 

Recent research in neural modeling also addresses task performance in problem 
solving in a biologically plausible manner. Using the Neural Engineering Framework 
(NEF) (Eliasmith and Anderson 2003), the behavior of humans in the Wason Four-
Card Experiment (Wason 1966) could be replicated using a large scale simulation of 
spiking neurons (Eliasmith 2005). Still, such models focus on the replication of an 
isolated task and are not yet a paradigm for the integration of problem solving, 
perception, reasoning, planning and reflection of a cognitive system in the face of its 
environment.  

2.2.4 Agent Architectures 

The previously discussed architectures have in common that, while modeling 
problem-solving, learning, sometimes perception and even action, they do not deal 
with motivation. Usually, the model is depicted as a system that receives input, 
processes it according to an organizational principle or a pre-defined goal and 
generates an output, as opposed to an autonomous entity embedded in an environment 
that it may influence and change according to its needs. Such a paradigm, the 
autonomous agent, was introduced in Artificial Intelligence in the 1980s. “An 
autonomous agent is a system situated within and part of an environment that senses 
that environment and acts on it, over time, in pursuit of its own agenda and so as to 
effect what it senses in the future.” (Franklin and Graesser 1996) 

There is no narrow universal agreement on what makes an agent; rather, agents are 
a broad stance, an attitude taken towards the design and interpretation of a system. 
Central to this notion are the ideas of 

- situatedness—an agent exists within an environment to which it is connected 
via sensors and actuators; usually the agent is localized in that environment, 
i.e. occupies a certain position in time and space, which makes only a subset 
of stimuli and actions affordable at a time 

- persistence—both the agent and the environment have a prolongued 
existence, so that perception and action may have an effect on future events 

- adaptivity—the agent changes its responses in accord to what it perceives, it 
might take action to improve its environment and learn how to cope with it 

- proactivity—the system acts on its own behalf, i.e. it has internalized goals or 
behavior tendencies instead of being fully controlled by a user. 

None of these requirements is strict, however; often, the agent paradigm is just an 
engineering metaphor that may apply very loosely to a software system. Sometimes, 
the term agent is used for any software system that acts on behalf of a human user. 
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While the agency concept that is used in computer science does not put any 
restrictions on cognitive capabilities or behavior of a system, it has been nonetheless 
very influential for the design of models of intelligence and cognition.88 

The demands posed to an agent depend mainly on its environment. Agent 
environments may put restrictions on observability (they might be completely or only 
partially observable), accessability (actions may be uniformly applicable, or only at 
certain locations), static or dynamic. The parameters of the environment may change 
continuously or in discrete steps, and sequences of events may be deterministic, 
stochastic or follow strategies. Also, the actions of the agent may leave permanent 
traces, or different instances of interactions may be independent from each other 
(episodic). Environments may also contain other agents; multi-agent systems (MAS) 
allow (or force) several systems to interact. 

 
Belief-Desire-Intention (BDI) systems are not as much a model of human cognition 
but an engineering stance and a terminological framework. When designing an 
autonomous agent, the need arises to equip it with some data structure that represents 
the state of its environment. These pieces of knowledge are usually acquired by some 
perceptual mechanism or inferred from previous states, and so they might 
misrepresent the environment; they are called beliefs. (Rao and Georgeff, 1995, 
characterize beliefs as something that provides information about the state of the 
system.)  

Furthermore, the agent will need to have information about preferences among the 
states it can achieve to define objectives. These objectives are very much like goals in 
the rule-based systems, but they might contradict each other, and be subject to 
constant changes. The objectives are called desires and define a motivational 
component. Eventually, the agent will have to pick an objective and commit itself to 
following it with some persistence; otherwise, there would be a need for continuous 
re-planning and reconsideration of all possible courses of action, which is usually not 
possible in a dynamic and complex domain. These commitments are called intentions. 

BDI agents undergo a typical cycle: they have to handle events, execute plans and 
update their mental structures; there are many possible ways to integrate deliberative 
processes (Dastani, Dignum and Meyer 2003), for instance, Michael Wooldridge 
suggests different cycles for “single-minded”, “open-minded” and “blindly 
committed” agents (Wooldridge 2000). 

The BDI paradigm has led to task specific control languages and agent 
architectures (Ingrand, Chatila, Alami and Robert 1996; Ingrand, Georgeff and Rao 
1992; Kinny and Phillip 2004; Brazier, Dunin-Keplicz, Treur and Verbrugge 1999), 

                                                 
88 The transition from monolithic programs to agents is also evident in implementations of 
Dörner’s Psi architecture. Earlier implementations, like EmoRegul (Hille 1997) did not interact 
with an independent, persistent environment, but on a stream of events that they learned to 
predict. The Psi Island implementation (Dörner 2002) features an agent that explores, changes 
and revisits locations in a dynamic environment. Current implementations (Dörner and Gerdes 
2005) provide a multi-agent environment, where several Psi systems act upon the environment 
and each other; they might also communicate to exchange representations that they have 
acquired through their exploration. 
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but most of them do not comprise models of human-like cognition (an exception is 
the current JACK system: Busetta et al. 1999; Howden et al. 2001). 

Behind BDI architectures stands the philosophical assumption (Bratman 1987) 
that knowledge of a system concerning the world (beliefs), desires and intentions 
(selected goals) are indeed states of this system which cause its behavior, and are thus 
represented explicitly. A weaker view contends that only beliefs are necessarily to be 
represented explicitly (Rao and Georgeff 1995), while desires may be related to 
events and intentions could be captured implicitly by plans. 

The philosophical position of instrumentalism maintains that notions such as 
beliefs and desires are merely ascribed to the system by its observers; even though 
these ascriptions are useful, they are fictitious. A compromise between these realist 
and instrumentalist views is suggested by Dennett (1991): while beliefs, desires and 
so on can only be detected by an observer using an intentional stance, they are 
nevertheless objective phenomena, which are abstracted using the stance from the 
patterns that determine the object of description. The question whether an architecture 
should strive to introduce functional descriptions of beliefs, desires and intentions 
remains unanswered by this. The particular stances in this controversy do have an 
influence on how particular agent architectures are designed.  

The classical example for agents without symbolic representations is Rodney 
Brooks’ subsumption architecture (Brooks 1986). A subsumption agent is a layered 
collection of finite state machines that may be connected to sensors, actuators or other 
state machines. Simple behaviors may be implemented by the interaction of state 
machines on a low level, and more complex behaviors are the result of the mediation 
of low level behavior by elements on a higher level. Subsumption agents do not have 
a world model and no capabilities for deliberative processing. There is no central 
control (although Brooks later introduced a “hormonal activation” that provides a 
mode of distributed control of all state machines that have a “receptor” for the 
respective “hormone” (Brooks 1991)). While the subsumption architecture may 
produce complex behavior, adaptation to new problems posed by the environment 
requires re-wiring; reactions of the agents are very fast, but mainly reflexive. (The 
subsumption architecture has later been extended to introduce landmark detection, 
map building group learning (Mataric 1992) and planning (Gatt 1992). The work on 
non-symbolic architectures continues, see for instance Bredenfeld et al. (2000), but it 
has yet to be shown that cognitive behavior can be elicited using a purely non-
symbolic system.  

 
Are AI architectures different from cognitive architectures? This argument has been 
made (Ritter et al. 2002, p. 43), but of course, it is not stricly true. Even though the 
project of capturing and understanding intelligence seems to have migrated from its 
traditional realms in AI into Cognitive Science, there are numerous efforts within AI 
research that focus on cognitive capabilities. 

The combination of the agent viewpoint with cognitive architectures and research 
in computer models of emotion has also sparked new research on cognitive models 
that integrate emotion and cognition. 
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2.2.4.1 The Cognition and Affect Architecture—the c ase for cognitive 
eclecticism 

The Cognition and Affect Project (CogAff, Sloman, Chrisley and Scheutz 2005, see 
also CogAff homepage) is not an implementation, but a concept for cognitive 
architectures in general. It provides a framework and a terminology to discuss existing 
architectures and define the demands of broad models of cognition. CogAff is not 
restricted to descriptions of human cognition—this is regarded as a special case (H-
CogAff). 

CogAff started in 1981 (Sloman and Croucher 1981) and was ten years later 
turned into a research group. In 1994, the SimAgent toolkit (Sloman and Logan 1999) 
for CogAff agents was introduced. SimAgent is based on Poplog, an AI environment 
that integrates Pop-11, Common LISP, Prolog and Standard ML. 

 
Figure 2.6: H-CogAff schema (adopted from Sloman, Chrisley and Scheutz 2005) 

Aaron Sloman introduces CogAff along two dimensions, defined by the layers of 
cognition—reactive, deliberative and meta-deliberative—and the stages (columns) of 
processing: perception, central processing, and action (Sloman, Chrisley and Scheutz 
2005).  

These dimensions are interleaved, so there is reactive perception, reactive control 
and reactive action, deliberative perception, deliberative control, deliberative action 
and so on. Information is exchanged within and between the layers. 

The reactive layer corresponds roughly to what has been modeled in Brooks’ 
subsumption architecture—a reflexive, entirely sub-symbolic system. The behaviors 
in this layer are fast and may be complex and well-adapted to the system’s 
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environment, but only at the cost of excessive storage requirements, or due to 
evolutionary re-wiring. The reactive layer does not rely much on memory and does 
not need a word model, i.e. it may act directly on the situation.89 

The deliberative layer is a more recent product of evolution and allows for “what 
if” reasoning, enabling anticipation and planning. The deliberative layer requires an 
explicit world model, compositional representations (for planning) and associative 
storage for learned generalizations that are applicable in future contexts. When the 
reactive layer can not handle a problem posed by the environment on its own, it 
presents it to the deliberative layer. Because of the limited parallelism of deliberative 
processing, only few of these problems can be handled at once; this can be regulated 
by a variable attention threshold. Perturbances may result from attempts of the 
reactive layer to divert attention from the current deliberations. 

The meta-management layer monitors the activity of the other layers to evaluate 
and control the deployment of strategies. It provides self-reflection and control of 
thought processes by sending information to them. Yet there is no complete 
subsumption, all layers are to some degree autonomous and merely coordinate their 
activity with each other. 

 
Corresponding to the layers, there are specialized and differentiated perceptual and 
motor functions. Sensory equipment on the reactive layer has to be sensitive to details 
and quickly available features of the environment (and internal processes), whereas 
perception on the deliberative layers makes use of abstractions over these details. 
Motor responses in the reactive system may be fast and direct reactions to input, while 
the actions incorporated in the deliberative layer can be more complex, involve 
decision-making and may require adaptation to a given situation before they can be 
executed. 

In addition to the normal information flow in the layers, there is a system that 
monitors the external and internal environment for the agent for events (especially 
dangers) that require immediate attention of all levels; this is called the ‘alarm 
system’. 

 
Sloman also addresses the role and functionality of emotions. Emotion in Sloman’s 
framework is not an isolated parameter, but a process that stems from the information 
processing of the system. Each level of processing yields different emotions:  

- Primary emotions stem from reactive processes and correspond to primitive 
behavior tendencies, such as freezing, fleeing, fighting and mating. Sloman labels 
them ‘proto-emotional’; they do not contribute to those processes which play a role in 
self-awareness. 

                                                 
89 In biological systems, there is evidence that even low-level behavior, for instance in insects, 
is rarely completely state-less, i.e. does require some kind and amount of memory. Also, 
reactive behavior, such as walking, may be mediated by a dynamic and detailed proprioceptive 
memory, which is updated according to simulated movements instead of sense-data to make the 
feedback from action to perception more responsive; sense-data will be used afterwards to tune 
the simulation (Blakemore, Wolpert and Frith 2000). 
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- Secondary emotions result from deliberative processes, they might correspond to 
past events, fictitious or anticipated situations. Examples are apprehension and hope. 
They can also be the product of conflicts between the deliberative layer and the 
reactive layer (for instance, if planning is interrupted by a primary emotion); Sloman 
calls these conflicts ‘perturbances’. 

- Tertiary emotions are higher order concepts like adoration and humiliation; they 
are rooted in reflections on the deliberative processes. Like secondary emotions, 
tertiary emotions can be the product of perturbances, caused by interruptions and 
diversions from other layers. 

Some emotions are caused specifically by the alarm system, i.e. if an event in the 
environment or in the internal processing of the agent requires an instant reaction, this 
re-configuration corresponds to specific emotions (like startling). 

 
Sloman’s model is entirely qualitative, largely speculative, and most details remain 
undefined. A partial implementation of a CogAff agent called Minder was the result 
of a PhD thesis by Wright (1997). Sloman’s ideas have been influential in the 
discussion and development of other, more detailed models of cognition and emotion. 
In order to model cognition, Sloman asks us to adopt our methodology to the task, not 
the other way around, that is, we should not attempt to design our architectures just 
along the methods of a single field: 

- Instead of concentrating on language, vision or learning, we should strive for 
complete architectures, because these faculties are highly interdependent and 
it will probably not be possible to understand them in isolation. 

- We should look at different species. Cognition is not a feat that suddenly 
cropped up in humans; rather, human cognition is a special case that might be 
better understood when regarding the capabilities of other species as well. 

- Individual differences should not be disregarded—the cognitive strategies and 
functions for instance of children, people with brain lesions or 
mathematicians are sometimes quite different, and understanding these 
differences may be crucial for understanding the mind. 

- While most architectures in psychology strive to closely mimic human 
performance for given tasks, there is no reason why intelligence should be 
restricted to human-like systems. The study and development of artificial 
systems may lead to new insights into the nature of cognition as well. 

- Let us take a constructionist stance, by looking at the design requirements (i.e. 
the tasks posed by a complex environment, social interaction, mental 
development etc.) that cognition answers. 

- There are many different possibilities for the design of systems that achieve 
cognitive feats—these possibilities should be explored beyond the obvious, 
because the routes that lead to a given result are not always clear. 

- A lot can be learned by looking at the requirements and design principles that 
are imposed by the evolution of a species and the development of the 
capabilities of an individual. Intelligence, emotion, motivation and sociality 
are the answer to particular evolutionary requirements. Both evolution and 
individual development require the incremental design of a system, so the 
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study of the particular possible paths that lead to the cognitive capabilities of 
a system might be necessary for their understanding. 

- Individual scientific disciplines tend to diverge, up to the point where their 
methodologies are mutually incompatible. We should combine the different 
disciplines of Cognitive Science, including philosophy, and switch often 
between their methodologies. 

 
One notable example of an AI architecture that refers to Aaron Sloman’s work is 
CMattie (Franklin 2000). CMattie has been designed to write and answer e-mails to 
organize and announce invited talks and seminars. Stan Franklin proposes a very 
eclectic system that combines a collection of small independent problem solving 
modules, called codelets and organized in a code rack with a Sparse Holographic 
Memory (Kanerva 1988), attention management mechanisms and a Slipnet. Codelets 
are based on Selfridge’s Pandemonium theory (Selfridge 1958) which suggests that 
mental activity is brought forth by the performance of a number of differently 
specialized autonomous agent structures (demons) which compete for resources. 
Depending on successes and failures of the system in the given (and changing) 
context, the demons become associated with the tasks posed to the system and each 
other.90 Slipnets (Hofstadter and Mitchell 1994) allow analogical reasoning and 
metaphor finding by organizing knowledge into hierarchies according to the available 
operators that allow transition between knowledge states, and then allowing 
“slippages” on the individual levels. CMattie also comprises a model of emotion that 
affects stored knowledge, but here, emotions do not modify the retrieval. Instead, they 
mainly act as additional properties of retrieved concepts and help to determine context 
and relevance. Franklin’s architecture represents ongoing work; the current 
instantiation is called LIDA (Ramamurthy, Baars, D’Mello and Franklin 2006). 

Another, relatively unknown model of human problem solving is John Andreae’s 
PurrPuss (Andreae 1998). Based on an associative memory, PurrPuss represents an 
agent in a highly abstract toy world, such as a much simplified chess problem. To 
explore the space of the problem, PurrPuss uses a motivational system that is based on 
novelty search (and works very much like Dörner’s urge for uncertainty reduction; 
novelty is in fact inverted certainty), its main role consists in avoiding repetitive 
behavior and finding well-structured representations. Additionally, the behavior of the 
agent can be guided by the experimenter using affiliatory signals (“smiles” and 
“frowns”). 

2.2.4.2 The Clarion Architecture 
Clarion (Sun 2005, 2003, 2002, 2004a, 2004b) stands for Connectionist Learning 
with Adoptive Rule Indication On-Line. It is a unified cognitive architecture that 
defines an agent and includes a detailed theory of motivation that is based on a set of 
drives. 

                                                 
90 The Pandemonium theory is also used in the cognitive architecture COGNET (Zachary, 
Ryder and Hicinbotham 1998). 
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Clarion’s representational structures hark back to Ron Sun’s work on 
CONSYDERR (1993) that models categorical inheritance using a two-layered 
connectionist system, whereby one layer is distributed, the other localist. Memory in 
Clarion likewise consists of a localist, rule-based layer that encodes explicit, symbolic 
knowledge, and an underlying distributed layer with implicit, sub-symbolic 
representations. A rule in Clarion connects a condition, encoded as a chunk, with an 
action, encoded as another chunk. Chunks are collections of dimension-value pairs 
(here, a dimension refers to an aspect of a concept, it is a slot within the chunk), they 
bundle a set of nodes in the distributed layer. A condition matches if the nodes that 
are connected to the condition chunk become activated within the sub-symbolic layer, 
for instance by a perceptual stimulus that is transmitted through other, associated 
nodes. Likewise, an action corresponds to the activation of the nodes that are 
connected to the action chunk of a rule. 

 
 
Figure 2.7: Overview of the Clarion architecture91 (see Sun 2003) 

Cognition in Clarion is mainly subject to the activity of two sub-systems, called for 
lack of better names the Action Centered Sub-system (ACS) and the Non-Action 
Centered Sub-system (NACS). Both store information using the two-layered 
architecture, i.e. there is an explicit and an implicit level of representations in each of 

                                                 
91 In the published literature, Clarion is depicted as a symmetric arrangement of four square 
boxes. To simplify the understanding of the control flow and emphasize the central role of 
meta-cognition, the position of the sub-systems has been re-arranged here. The position of the 
boxes does not imply subsumption. 



 
 

 
 
 

148 The Psi theory as a model of cognition 

the two sub-systems. The working memory, acting as temporary storage for decision 
making, is a part of the ACS, which also maintains the active behavior strategies. To 
hold general knowledge, the NACS provides a semantic memory. An episodic 
memory (a protocol of past events) and an associative object memory are both 
included in the NACS. 

There are two additional modules: the Motivational Sub-system (MS) holds the 
goals and the drives, the Meta-Cognitive Sub-system (MCS) coordinates the activity 
of all the other sub-systems.Several ways lead to learning: 

- The symbolic layer may be organized by backpropagation, using Q-learning 
(Watkins 1989). The reinforcement (Q value) is based on the satisfaction of 
Clarion’s goals and drives92 and determined by the MCS. 

- Rules may be translated into the sub-symbolic layer. This corresponds to the 
top-down assimilation of routinized explicit knowledge into a reflexive skill. 

- Rules may be extracted from the sub-symbolic layer, which might afford 
generalization (i.e. the opportunity to apply the previously implicit knowledge 
in different contexts). 

- Rules may be modified within the symbolic layer. 
In the NACS, learning works either by rule-extraction or by direct rule adoption 

(in this case, rules are taken from the environment and presented via the ACS). 
The MS holds goals that are instantiated by the MCS to satisfy the drives of the 

system. Clarion does not only offer a goal stack, but combines the stack with a list, 
because a stack restricts the order in which goals have to be achieved, which is only 
realistic for non-concurrent sub-goals. 

Drives are either innate (hard-wired) or acquired and fall in three categories, 
which form a hierarchy (i.e. an order of preference): 

- Low-level primary drives (Tyrell 1993) include physiological needs, such as 
food and the avoidance of danger. 

- High-level primary drives (Maslow 1987; Sun 2003) are based on more 
abstract needs, which require cognitive assessments of situations to be 
actualized. Examples of high-level primary drives are the need for belonging, 
for self-actualization and self-esteem.93 

- Secondary drives are derived drives and stem from learning and conditioning. 
 

The action control system of Clarion is designed to fulfill the following conditions 
(Simon 1967; Tyrell 1993; see also Sloman 2000): 

- Proportional Activation: the strength of the drive should correspond to the 
activity of the system in fulfilling it. 

- Opportunism: When confronted with an opportunity to satisfy a drive, the agent 
should take it. 

                                                 
92 This is the same principle as in Dörner’s Psi architecture: There, the reinforcement value is 
called pleasure signal and corresponds to the change in the discrepancy between target value 
and current value in the demands of the agent (Dörner 1999, pp. 47). 
93 The high-level drives suggested Sun’s model show a lower degree of parsimony, when 
compared with Dörner’s model, i.e. the Psi theory suggests a smaller set of drives to achieve 
the same behavioral dimensionality. 
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- Continguity of actions: Behavior should not oscillate, but follow persistent plans. 
- Persistence: To maximize the intervals in which the satisfaction of a need is 

required, the agent does not stop at a minimal satisfaction. It should satisfy drives 
maximally when given the opportunity. 

- Interruptions: The agent should interrupt its activity when necessary. 
- Combination of preferences: The agent should choose goals in such a way as to 

satisfy as many drives as possible in the course of its actions. 
The reinforcement that results from the satisfaction of the drives is measured by 

the meta-cognitive sub-system and used as a learning signal. The MCS also 
establishes goals depending on the drives. Also, the communication between the other 
modules is filtered and regulated by the MCS, and it controls the modes of learning 
between the explicit and implicit representational layers. 

 
Clarion is a relatively recent development and still undergoes frequent changes. Its 
authors do not refer to Dörner’s Psi architecture (they are probably not aware of its 
existence) but the similarities are quite striking: 

- There is a close correspondence between the urges of a Psi agent and the 
drives of a Clarion agent. The low level ‘physiological’ drives are even 
identical. 

- Both systems suggest a motivational component that determines a goal. (In 
the Psi theory, goals are represented as demand-satisfying situations 
associated with information on how to reach them, but there is no explicit 
stack or list structure as in Clarion).  

- Goals are used to filter incoming information and contribute to the regulation 
of the processing of different cognitive mechanisms. Contextual priming and 
modulation of cognitive processing based on demand states are central to both 
models. 

- Both systems acknowledge the need to combine symbolic and sub-symbolic 
representations and suggest solutions (in Clarion, using two-layered memory 
mechanisms, while Psi proposes a single, hybrid representation). Psi and 
Clarion are neurosymbolic architectures. 

- Learning is facilitated by reinforcements based on the satisfaction or 
frustration of demands, by neural learning, and by rule-based abstractions. 

 
While implementation details and the model focus differ, Clarion and Psi both attempt 
to model the breadth of human cognition in an abstract manner and show a surprising 
degree of convergence. 

 
This short assessment of the field of cognitive architectures is very far from being 
complete, but it should serve well to identify the context that Dörner’s architecture 
has grown into, and we may now attempt to pinpoint some of the similarities to 
existing systems, discuss shortcomings and highlight areas in which the Psi theory 
seems to be unique. 
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2.3 The Psi theory as a model of human cognition 

What springs to the eye when glancing at the Psi theory are three aspects: its 
impressive breadth, its methodological heterogeneity and eclecticism (up to a point at 
which some might accuse it of grave ignorance), and, despite its independent and 
relatively isolated development history, its similarity to various individual advances in 
very different disciplines of Cognitive Science. 

 
Of twenty-two major areas of cognitive functioning recently defined in a DARPA 
proposal for cognitive architectures (DARPA 2005), Dörner’s Psi theory addresses 
fourteen (memory, learning, executive processes, language, sociality/emotion, 
consciousness, knowledge representation, logic/reasoning, elementary vision, object 
perception, spatial perception, spatial cognition, attentional mechanisms and 
motivation), ten of them in considerable detail. (The Psi theory currently does not 
discuss the areas of somato-sensation, olfaction, gustation, audition, proprioception, 
vestibular function and polysensory integration, and it says relatively little about the 
individual domains of creativity.) Among the 147 sub-topics identified in the 
proposal, the Psi theory offers a discussion and at least partial implementation as a 
computer model of 68 (see appendix of this section for an overview), which might 
very well be unparalleled in the field of cognitive architectures. While many of these 
elements have only found a very shallow representation, especially the Psi theory’s 
contribution to a possible understanding of emotion and motivation is quite 
substantial and goes beyond what other cognitive models that I am aware of have to 
offer, and it is one of the few computational models of emotion that have been 
validated against results from human subjects in a complex problem solving task 
(Ritter et al. 2002, p. 37). 

Methodologically, the Psi theory marks a convergence of philosophy, theoretical 
psychology, Artificial Intelligence, artificial life and cognitive modeling, which 
means that it is difficult to compare to other cognitive models as such, but of course it 
is possible to match the individual areas covered in the Psi theory against work in the 
respective disciplines. (While the author lacks the competence to criticize the Psi 
theory adequately from the different disciplinary viewpoints, this work mainly 
attempts to present the theory in such a way that it can be understood by practitioners 
of all these fields.) 

2.3.1 Main assumptions 

While the publications concerning the Psi theory do not give an explicit list of its 
theoretical assumptions, I believe that its core might be summarized in the following 
statements: 

 
1. Homeostasis: it is fruitful to describe a cognitive system as a structure 

consisting of relationships and dependencies that is designed to maintain a 
homeostatic balance in the face of a dynamic environment.  

2. Explicit symbolic representations:  
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a. The Psi theory suggests hierarchical networks of nodes as a 
universal mode of representation for declarative, procedural and tacit 
knowledge: representations in Psi agents are neurosymbolic. 

b. These nodes may encode localist and distributed representations. 
c. The activity of the system is modeled using modulated and 

directional spreading of activation within these networks.  
d. Plans, episodes, situations and objects are described with a semantic 

network formalism that relies on a fixed number of pre-defined link 
types, which especially encode causal/sequential ordering, and 
partonomic hierarchies (the theory specifies four basic link-types).  

e. There are special nodes (representing neural circuits) that control the 
spread of activation and the forming of temporary or permanent 
associations and their dissociations. 

3. Memory:  
a. The Psi theory posits a world model (situation image).  
b. The current situation image is extrapolated into a branching 

expectation horizon (consisting of anticipated developments and 
active plans). 

c. Working memory also contains an inner screen, a hypothetical world 
model that is used for comparisons during recognition, and for 
planning.  

d. The situation image is gradually transferred into an episodic memory 
(protocol). 

e. By selective decay and reinforcement, portions of this long-term 
memory provide automated behavioral routines, and elements for 
plans (procedural memory). 

f. The fundamental atomic element of plans and behavior sequences is 
a triplet of a (partial, hierarchical) situation description, forming a 
condition, an operator (a hierarchical action description) and an 
expected outcome of the operation as another (partial, hierachical) 
situation description. 

g. Object descriptions (mainly declarative) are also part of long-term 
memory and the product of perceptual processes and affordances.94 

h. Situations and operators in long-term memory may be associated 
with motivational relevance, which is instrumental in retrieval and 
reinforcement.  

i. Operations on memory content are subject to emotional modulation. 
4. Perception: 

a. Perception is based on conceptual hypotheses, which guide the 
recognition of objects, situations and episodes. Hypothesis based 
perception (‘HyPercept’) is understood as a bottom-up (data-driven 

                                                 
94 Here, affordances (Gibson 1977, 1979) refer to the integration of perceptual information with 
applicable operators within the object descriptions. 
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and context-dependent) cueing of hypotheses that is interleaved with 
a bottom-down verification. 

b. The acquisition of schematic hierarchical descriptions and their 
gradual adaptation and revision can be described as assimilation and 
accommodation (Piaget 1954). 

c. Hypothesis based perception is a universal principle that applies to 
visual perception, auditory perception, discourse interpretation and 
even memory interpretation. 

d. Perception is subject to emotional modulation. 
5. Urges/drives95: 

a. The activity of the system is directed towards the satisfaction of a 
finite set of primary, pre-defined urges (drives). 

b. All goals of the system are situations that are associated with the 
satisfaction of an urge, or situations that are instrumental in 
achieving such a situation (this also includes abstract problem 
solving, aesthetics, the maintenance of social relationships and 
altruistic behavior). 

c. These urges reflect demands of the system: a mismatch between a 
target value of a demand and the current value results in an urge 
signal, which is proportional to the deviation, and which might give 
rise to a motive. 

d. There are three categories of urges: 
i. physiological urges (such as food, water, maintenance of 

physical integrity), which are relieved by the consumption 
of matching resources and increased by the metabolic 
processes of the system, or inflicted damage (integrity). 

ii.  social urges (affiliation). The demand for affiliation is an 
individual variable and adjusted through early experiences. 
The urge for affiliation needs to be satisfied in regular 
intervals by external legitimacy signals (provided by other 
agents as a signal of acceptance and/or gratification) or 
internal legitimacy signals (created by the fulfillment of 
social norms). It is increased by social frustration (anti-
legitimacy signals) or supplicative signals (demands of 
other agents for help, which create both a suffering by 
frustration of the affiliation urge, and a promise of 
gratification). 

iii.  cognitive urges (reduction of uncertainty, and competence). 
Uncertainty reduction is maintained through exploration 
and frustrated by mismatches with expectations and/or 

                                                 
95 In Dörner’s terminology, a demand is a “Bedarf” , an urge signal is a “Bedürfnissignal”. 
Urge also be translated with “drive” (“Trieb”) , however, since Dörner did not use “Trieb”  and 
“urge”  has been introduced by Masanao Toda (1982) to describe a “Bedürfnissignal”, and 
furthermore, Dörner refers to Toda in the formulation of his theory, I have chosen “urge”  as 
the correct translation. 
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failures to create anticipations. Competence consists of task 
specific competence (and can be acquired through 
exploration of a task domain) and general competence 
(which measures the ability to fulfill the demands in 
general). The urge for competence is frustrated by actual 
and anticipated failures to reach a goal. The cognitive urges 
are subject to individual variability and need regular 
satisfaction.  

e. The model strives for maximal parsimony in the specification of 
urges (this is a methodological assumption). For instance, there is no 
need to specify a specific urge for social power, because this can be 
reflected by the competence in reaching affiliative goals, while an 
urge for belongingness partially corresponds to uncertainty reduction 
in the social domain. The model should only expand the set of basic 
urges if it can be shown that the existing set is unable to produce the 
desired variability in behavioral goals. Note that none of the 
aforementioned urges may be omitted without affecting the behavior. 

6. Pleasure and distress: 
a. A change in a demand of the system is reflected in a pleasure or 

distress signal. The strength of this signal is proportional to the 
extent of the change in the demand measured over a short interval of 
time. 

b. Pleasure and distress signals are reinforcement values for the 
learning of behavioral procedures and episodic sequences and define 
appetitive and aversive goals. 

7. Modulation:  
a. Cognitive processing is subject to global modulatory parameters,  

which adjust the cognitive resources of the system to the 
environmental and internal situation. 

b. Modulators control behavioral tendencies (action readiness via 
general activation or arousal), stability of active behaviors/chosen 
goals (selection threshold), the rate of orientation behavior (sampling 
rate or securing threshold) and the width and depth of activation 
spreading in perceptual processing, memory retrieval and planning 
(activation and resolution level). 

c. The effect and the range of modulator values are subject to 
individual variance. 

8. Emotion: 
a. Emotion is not an independent sub-system, a module or a parameter 

set, but an intrinsic aspect of cognition. Emotion is an emergent 
property of the modulation of perception, behavior and cognitive 
processing, and it can therefore not be understood outside the context 
of cognition. To model emotion, we need a cognitive system that can 
be modulated to adapt its use of processing resources and behavior 
tendencies. (According to Dörner, this is necessary and sufficient.) 
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b. In the Psi theory, emotions are understood as a configurational 
setting of the cognitive modulators along with the pleasure/distress 
dimension and the assessment of the cognitive urges.96 

c. The phenomenological qualities of emotion are due to the effect of 
modulatory settings on perception and cognitive functioning (i.e. the 
perception yields different representations of memory, self and 
environment depending on the modulation), and to the experience of 
accompanying physical sensations that result from the effects of the 
particular modulator settings on the physiology of the system (for 
instance, by changing the muscular tension, the digestive functions, 
blood pressure and so on). 

d. The experience of emotion as such (i.e. as having an emotion) 
requires reflective capabilities. Undergoing a modulation is a 
necessary, but not a sufficient condition of experiencing it as an 
emotion. 

9. Motivation: 
a. Motives are combinations of urges and a goal. Goals are represented 

by a situation that affords the satisfaction of the corresponding 
urge.97 

b. There may be several motives active at a time, but only one is chosen 
to determine the choice of behaviors of the agent. 

c. The choice of the dominant motive depends on the anticipated 
probability of satisfying the associated urge and the strength of the 
urge signal. (This means also that the agent may opportunistically 
satisfy another urge if presented with that option.) 

d. The stability of the dominant motive against other active motivations 
is regulated using the selection threshold parameter, which depends 
on the urgency of the demand and individual variance. 

10. Learning: 
a. Perceptual learning comprises the assimilation/accommodation of 

new/existing schemas by hypothesis based perception. 
b. Procedural learning depends on reinforcing the associations of 

actions and preconditions (situations that afford these actions) with 
appetitive or aversive goals, which is triggered by pleasure and 
distress signals. 

c. Abstractions may be learned by evaluating and reorganizing episodic 
and declarative descriptions to generalize and fill in missing 
interpretations (this facilitates the organization of knowledge 
according to conceptual frames and scripts). 

                                                 
96 This perspective addresses primary emotions, such as joy, anger, fear, surprise, relief, but not 
attitudes like envy or jealousy, or emotional responses that are the result of modulations which 
correspond to specific demands of the environment, such as disgust. 
97 Note that motives are terminologically and conceptually different from urges and emotions. 
Hunger, for instance, is an urge signal, an association of hunger with an opportunity to eat is a 
motive, and apprehension of an expected feast may be an emergent emotion. 
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d. Behavior sequences and object/situation representations are 
strengthened by use. 

e. Tacit knowledge (especially sensory-motor capabilities) may be 
acquired by neural learning. 

f. Unused associations decay, if their strength is below a certain 
threshold: highly relevant knowledge may not be forgotten, while 
spurious associations tend to disappear. 

11. Problem solving: 
a. Problem solving is directed towards finding a path between a given 

situation and a goal situation, on completing or reorganizing mental 
representations (for instance, the identification of relationships 
between situations or of missing features in a situational frame) or 
serves an exploratory goal. 

b. It is organized in stages according to the Rasmussen ladder 
(Rasmussen 1983). If no immediate response to a problem is found, 
the system first attempts to resort to a behavioral routine 
(automatism), and if this is not successful, it attempts to construct a 
plan. If planning fails, the system resorts to exploration (or switches 
to another motive). 

c. Problem solving is context dependent (contextual priming is served 
by associative pre-activation of mental content) and subject to 
modulation. 

d. The strategies that encompass problem solving are parsimonious. 
They can be reflected upon and reorganized according to learning 
and experience. 

e. Many advanced problem solving strategies can not be adequately 
modeled without assuming linguistic capabilities.98 

12. Language and consciousness: 
a. Language has to be explained as syntactically organized symbols 

that designate conceptual representations, and a model of language 
thus starts with a model of mental representation. Language extends 
cognition by affording the categorical organization of concepts and 
by aiding in meta-cognition. (Cognition is not an extension of 
language.) 

b. The understanding of discourse may be modeled along the principles 
of hypothesis based perception and assimilation/accommodation of 
schematic representations. 

c. Consciousness is related to the abstraction of a concept of self over 
experiences and protocols of the system and the integration of that 
concept with sensory experience; there is no explanatory gap 

                                                 
98 Currently, only hill-climbing and an emulation of activation-based search are implemented. 
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between conscious experience and a computational model of 
cognition.99 

 
Arguably, the Psi theory is made up of many fragmentary answers to cognitive design 
questions, grouped around a relatively simple functionalistic core, i.e. a set of 
proposed algorithms modeling basic cognitive functions. These algorithms do not 
claim to be faithful representations of what goes on in a human or primate brain. They 
do not reproduce particular performances; rather, they strive to produce behaviors of 
those classes that we would call cognitive: creative, perceptive, rational, emotional 
and so on. In this sense, it is an AI architecture and not a model of human cognition. 

The predictions and propositions of the Psi theory are almost completely 
qualitative. Where quantitative statements are made, for instance about the rate of 
decay of the associations in episodic memory, the width and depth of activation 
spreading during memory retrieval, these statements are not supported by 
experimental evidence; they represent ad hoc solutions to engineering requirements 
posed by the design of a problem solving and learning agent. 

A partial exception to this rule is Dörner’s emotional model. While it contains 
many free variables that determine the settings of modulator parameters and the 
response to motive pressures, it can be fitted to human subjects in behavioral 
experiments and thereby demonstrate similar performance in an experimental setting 
as different personality types (Dörner 2003, Dörner et al. 2002, p. 249-324, Detje 
2000). The parameter set can also be fitted to an environment by an evolutionary 
simulation (Dörner and Gerdes 2005); the free parameters of the emotional and 
motivational model allow a plausible reproduction of personal variances. 

Further developments and elaboration of the theory may include more quantitative 
predictions that could be compared to experimental results, and thus the compatibility 
to current methodology in experimental psychology could be increased while adding 
useful insights and criticisms to Dörner’s paradigm: Still, a qualitative model of 
cognition is not per se inferior to one that lends itself to quantitative validation: most 
fundamental and interesting questions in Cognitive Science do not yet start with “how 
much”, but only with “how”. The Psi theory gives many detailed and decisive 
answers to quite a few of these “how”s, which do not imply arbitrary postulates but 
present avenues for a testable functional model of general intelligence, motivation and 
experience. Furthermore, the conceptual body and the terminology implied by the Psi 
theoy represent a philosophical framework, a foundation, rooted in an understanding 
of systems science, functionalism and analytic philosophy of the mind that is broad 
and concise enough to start asking and arguing questions about issues like qualia and 
phenomenal experience, sense of self and identity, personality, sociality and 
embodiment, mental representation and semantics, in a productive and potentially 
insightful way. 

 

                                                 
99 Dörner subscribes to the computational theory of mind in the strong sense, i.e. he maintains 
not only that a sufficiently detailed theory of mind can and should be expressed as a 
computational model, but that the mind is in fact a computational phenomenon (Dörner 2004). 
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The breadth of the Psi theory also makes a detailed evaluation difficult; on the 
following pages, I will attempt to sketch what I perceive as the most salient 
contributions of Psi to the field of cognitive modeling and point out potential flaws 
that become apparent when comparing it to existing architectures. I will mainly focus 
on representation, memory and emotion, but make some general remarks first. 

2.3.2 Parsimony in the Psi theory 

Dörner’s approach to modeling cognition bears a likeness to Newell’s simplicity 
principle of Soar: it strives to introduce a minimal amount of orthogonal mechanisms 
for producing a desired behavior. Dörner treats the mind essentially as a blackbox that 
facilitates a certain set of functions. Because it is usually not possible to open the box 
and have a direct look at its workings, the decisive criterion between alternative, 
equivalent explanations of the same functionality is the respective sparseness of these 
explanations. In other words: the Psi theory attempts to identify the simplest 
hypothesis explaing the empirically given phenomena. When confronted with a 
choice between unitary approaches—a single principle explaining many 
regularities—vs. a modular perspective (where different regularities stem from 
different cognitive functions, and individual regularities might even stem from the 
interaction of several similar cognitive mechanisms), the Psi theory tends to go for the 
unitary model: a single mode of representations (even though utilized differently 
throughout the system), a single set of modulators and modulator influences, a single 
perceptual principle (HyPercept), a single level of urge indicators and so on. 

While this seems like the obvious answer to the request of applying Occam’s razor 
to an otherwise unwieldy thicket of sprouting sub-theories, it is also unlikely to result 
in an accurate model of the mind. As John Anderson pointed out: “It is implausible 
that evolution would have produced the simplest structure for the human mind. … 
One might say that evolution abhors parsimony. Evolution typically produces multiple 
systems for a function.” (Anderson 1983, p. 41) 

“Imagine a scientist of a past generation arguing, ‘I know digestion is performed 
by the stomach; therefore, I have a strong bias against believing it is performed by 
the intestine. And if nature should be so perverse as to have the intestine also do 
digestion, I am almost certain it will be the exact same mechanisms as are involved in 
the stomach. And if, God forbid, that seems not to be the case, I will search for some 
level where there is only a uniform set of digestive principles—even if that takes me to 
a subatomic level.’ 

We can be sure that the human mind is not to be explained by a small set of 
assumptions. There is no reason to suppose the mind is simpler than the body. … The 
issue between the faculty approach and the unitary approach is only secondarily one 
of complexity. The major issue is whether a complex set of structures and processes 
spans a broad range of phenomena (a unitary approach) or whether different 
structures and processes underlie different cognitive functions (the faculty approach). 
The only choice is between two complex viewpoints.” 
 
Anderson’s point is certainly a valid one. However, an answer can hardly consist in 
needlessly reducing the parsimony of the models—the Psi theory already is a very 
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complex viewpoint, and any increase in complexity should occur with prudence, and 
based on empirical evidence that is inconsistent with the given state of the theory. By 
introducing more complexity into an admittedly simplified model of cognition than 
warranted by the empirically observed phenomena, it is about as likely to become 
more accurate as a model of digestion becomes better by the arbitrary assumption of 
secondary chewing organs and parallel stomachs, just because we are convniced that 
evolution would always provide multiple systems for any given function. 

Thus, the stance of the Psi theory towards theoretical sparseness might damn it to 
a misrepresentation of how the human mind works, but this seems to be an inevitable 
and necessary methodological evil. 

2.3.3 Is the Psi theory a theory on human behavior?  

Dörner maintains that the Psi theory attempts to capture human action regulation 
(2002) and the breadth of the activity of the human psyche (1999). And yet one might 
ask if the Psi theory is indeed a theory of human psychology, or of something 
different. Instead of meticously comparing the timing of model behavior with human 
subjects (as often done in ACT-R experiments), experiments focus on things like 
simple object and face recognition, principles of cognitive modulation, problem 
solving without symbolic planning and even Artificial Life simulation. It is not clear, 
for instance, why the Psi theory should give better insight into human cognition than 
into the cognitive performance of other primates or sophisticated mammals. Studies 
of human cognition regularly focus on language, on the ability to synchronize 
attention on external objects between individuals (joint attention), on how an 
individual comprehends and represents the mental states of another (theory of mind), 
on the learning and performance of mental arithmetic, even on the comprehension of 
art and music—things that seem to set humans apart from most other species. 
Conversely, the Psi theory treats language and sociality rather fleetingly, and has 
almost nothing to say about theory of mind, joint attention or artistic capabilities. 
What arguably forms the core of the Psi theory—motivation, action control, 
(abstracted) perception and mental representation—is not claimed to be specifically 
human, but likely being shared with many other species. In fact, Dörner’s theory of 
motivation bears a lot of semblance to work in animal psychology (Lorenz 1965). 

This makes sense, if we accept that there is either not a single specific property 
that sets human cognition completely apart from that of other animals, but that the 
difference is primarily a matter of quantitative scaling, which at some point yields 
new behavioral qualities (as, for instance, John Anderson suggests100), or that there is 
a very small set of functions that differentiates humans from other primates. 
Candidates for such a specific cognitive toolset might be the ability to learn 
grammatical language by virtue of a distinctive human ability to apply recursion on 
symbol structures (universal grammar, see Chomsky 1968), the capability for second 
order symbol use (i.e. the fusion of symbols into arbitrary meta-symbols, which in 

                                                 
100 Plenary talk at Richard Young’s symposium: What makes us special? Computational 
differences in human, animal, and machine intelligence, with J. R. Anderson, T. M. Mitchell, 
D. Floreano, and A. Treves during ICCM 2006, Trieste, Italy. 
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turn would allow for recursion), the ability to freely associate any kind of mental 
representation with any other, the ability to perform abstract planning by recombining 
memories and anticipating counterfactual situations, an especially well-trained sense 
at monitoring  and modeling other individuals in a group to avoid cheating (Cosmides 
and Tooby 2000) or simply the ability to jointly direct attention between individuals 
to enable indicative communication beyond warning signals and simple affirmative, 
supplicative, discouraging and encouraging (imperative) messages (Tomasello 2003). 
The study of intellectually high-functioning autists (Baron-Cohen 1995) suggests that 
social capabalities are rather inconvincing candidates for an enabler of human 
intellectual performance, nonetheless, it might be argued that each of the 
aforementioned feats either allows for learning grammatical language, or stems from 
the ability to use grammatical language. 

Dörner himself makes a similar claim when he distinguishes two different classes 
of models of the Psi theory: the Psi sine lingua and Psi cum lingua (Dörner 1999, p. 
740). While the speechless version of Psi models only those abilities that do not rely 
on language, and thus only performs simple problem solving, has limited anticipatory 
abilities, primitive planning and does not do well in terms of categorizing objects, 
learning grammatical language allows for a host of new behavioral qualities. Thus, in 
Dörner’s view, the primary role of language for cognition might not be 
communication between individuals about given object categories, but mental 
organization within the individual. Language acts as an organizing tool for thought; it 
evokes object representations, scenes and abstractions, guides mental simulation and 
sets up reflective mechanisms. Language makes mental representations addressable 
and thus permits propositional thinking (Henser 1999, p. 28). Without it, associations 
would only be triggered by external events, by needs of the individual or at random, 
making abstract thought difficult, and planning in the absence of needs and related 
items impossible.  

By organizing language itself, by deriving symbols that refer to relationships and 
relational categories between symbols, language becomes grammatical and allows, 
within the same framework of limited cognitive resources, to construct more 
differentiated representations, and to manipulate these in a more differentiated way. 

This view that grammatical language is the primary enabler for human-like 
thinking is shared by so many people in Cognitive Science, that it is probably not 
necessary to defend it, and is summarized for instance by Daniel Dennett: 
“Thinking—our kind of thinking—had to wait for talking to emerge,” (Dennett 1996, 
p. 130) who also extends this claim to consciousness: “In order to be conscious—in 
order to be the sort of thing it is like something to be—it is necessary to have a 
certain sort of informational organization… [one] that is swiftly achieved in one 
species, our, and in no other… My claim is not that other species lack our kind of self-
consciousness… I am claiming that what must be added to mere responsivity, mere 
discrimination, to count as consciousness at all is an organization that is not 
ubiquitous among sentient organisms” (Dennett 1998, p. 347).  

My emphasis on language as a tool for thinking should not be misunderstood as an 
attempt to downplay the role of communication for knowledge acquisition and 
organization. Since language allows capitalizing on other individuals’ categorizations, 
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concepts and experiences, it turns each communicating individual into a part of a 
collaborative cognitive endeavor, spanning not only over populations but also 
including the knowledge of past generations. Notions acquired by communication 
with others do not only become part of propositional or high-level categorical 
relations, but may also be fed back into low-level perception. Cultural agreements on 
color categories, for instance, lead to distinct differentiations in the low-level 
categorization of color (Steels and Belpaeme 2005), and while it might be difficult to 
arrive at useful categorical taxonomies of, say, animals in a single lifetime, it is 
relatively easy to empirically explore the boundaries of categories that are supplied by 
others.  

 
How would a Psi agent learn language?—According to Dörner, perception is best 
described as a parsing process, in which stimuli are encoded into incrementally 
refined hierarchical hypotheses. Hypotheses will have to be hierarchical, because they 
are based on object descriptions consisting of sub-objects or features, which in turn 
consist of sub-features and so on. The lowest set of features is directly mapped to 
input stimuli. If a match between a given set of stimuli (a neural input pattern, which 
is possibly distributed in space and time) and such a hierarchical hypothesis can be 
found, then the hypothesis turns into a recognized situation or object (Dörner et al. 
1988; Schaub 1993, 1997; Dörner 1999, p. 149-157). The same kind of parser could 
be employed to comprehend language. The input patterns are sequences of symbols, 
and the perceptual process would transform them into evoked object and situation 
descriptions, whereby hierarchical language representations would form an 
intermediate stage. Language recognition is nothing but a special case of object 
recognition, a case characterized by linearized, discrete input which can thus be 
mapped in a relatively well-defined way to a discrete, hierarchical, systematic and 
compositional interpretation stage, which in turn refers to possibly continuous, vague, 
hierarchical object descriptions. The language of the object descriptions (the 
“mentalese” of a Psi agent) may also encode distributed representations with 
arbitrarily linked weights, which might violate compositionality and systematicity. 
More accurately put: linearized, discrete language as used in communication and 
introspective monologues is a special case of a more general language of thought. 
Therefore, the transformation of an agent’s mental representations into discrete, 
linearized language is a lossy process. To facilitate economic linguistic 
representations, the transformation process of “mentalese” to language will favor 
expressions which are not exhaustive situational descriptions. Instead, the goal of 
linguistic descriptions will have to be sufficient disambiguation—thus, like in 
perceptual processing, it is not necessary to incorporate all potentially available data 
into the recognition process, but instead, the available data is used in such a way that 
the perceptual, respective communicative goal—the sufficient specification of 
constraints in hypothesis space—is achieved. To reverse the process, that is, to 
comprehend an utterance, the elements of the utterance are used as cues for the 
evocation of mental content, which is then further constrained and disambiguated. 

 
The representation and comprehension of language depends on two crucial abilities: 
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- Using arbitrary signs to evoke object concepts (symbol use). 
- Applying perceptual parsing on hierarchical abstractions of symbol structures. 
In fact, these conditions have a lot of implications, which are poorly covered in the 

current state of the theory’s development (Künzel 2004):  
What would a mechanism look like, that allows distinguishing symbols and 

referents? In the current implementations by Dörner’s group, this is done with a 
specific link type (pic/lan) to denote the relationship between labels and object 
hypotheses. However, every label could be made the object of a reference in a 
different context, and almost every object description could act as a label, so the 
linking would have to be interpreted depending on context. A linking strategy that 
simply separates memory content into two non-overlapping classes (symbols and 
referents) is not going to be adequate. 

Grammatical parsing requires recursion, that s, it depends on constructs that are 
part of their own definition (for instance, in English, a noun phrase can be made up of 
an adjective, followed by a noun phrase). How can recursion be implemented?—
According to the Psi theory, nothing prevents perceptual hypotheses from being 
partially recursive, to describe fractal object structures, for instance. Again, neither 
the current implementations nor the published theory cover recursion, which would 
require multiple instantiations of features within a single representational construct. 
How this could be achieved in the brain is subject of a lot of ongoing research; 
typically, researchers assume that it is done either with the neural equivalent of 
pointer structures or by “oscillatory multiplexing”. The first variant amounts to 
temporarily linking “pointer neurons” to the actual object representations, so that the 
activation and state values of neural computation would have to be stored along with 
the pointers, not within the actual representations. Alternatively, neural structures 
could receive several alternating activation values, i.e. each representational unit 
would undergo an activation cycle with a number of subsequent time frames, and it 
could be part of a different representation (or of different instances within the same 
representation) in each time frame (Singer 2005, Knoblauch and Palm 2005).  

Also, in order to establish grammar, Psi agents would need to represent types and 
distinguish them from object instances and individuals, to which they need to be 
bound during parsing. The representations as documented by Dörner (2002) do not 
cover types (we will discuss this issue later on). 

The representational requirements for language are necessary, but they are not 
sufficient. Even if grammatical parsing, incremental learning of language-based 
concepts and grammatical constructs, disambiguation and so on are available, Psi 
agents will need communicative intentions (i.e. a motive structure that results in 
communicative goals) and a means of language production. They will also need to 
distinguish between factual and hypothetical descriptions (Dörner 1999, p. 675), 
ascribe beliefs and goals to other agents when communicating with them and they will 
have to learn how to use symbols in a context dependent manner. 

 
To summarize, Dörner acknowledges the role of grammatical language for thinking, 
but the current state of the theory does not cover it in a manner that would suffice for 
implementing it in a model. Therefore, Dörner’s current implementations are limited 
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when it comes to communication, mental arithmetics, categorization, planning and 
self-reflection. This can also be shown experimentally when comparing the 
performance of Psi agent implementations to human subjects: while Dörner’s 
simulations of human problem solving in the “Island” game (in which an agent has to 
explore a virtual world in the pursuit of resources) tend to do well as far as emotion, 
motivation and strategy selection are concerned (Dörner et al. 2002, p. 312-355), they 
deteriorate if people assess their own performance using self-reflection. Furthermore, 
current Psi agents will not be able to tackle tasks involving complex hierarchical 
planning, as-if reasoning and so on. 

These limits are not problems caused by the viewpoint of the theory, but are 
entirely due to its current state of development. Promising research programmes that 
would foster the extension of the theory towards more human-like performance 
include: 

- The representations specified in the Psi theory should be extended to better 
cover typologies/taxonomies, and to allow for multiple binding and recursion. 
The currently suggested representations are a good foundation, because they 
are very general; they already allow for systematic and compositional 
representations, they are always completely grounded in the system’s 
interaction context, and they may both be symbolic and sub-symbolic. A 
concrete research project might be to implement the reading of written 
sentences in a given artificial language, using hypothesis-based perception. 
This task is concise, but needs both symbolic and sub-symbolic learning, 
bottom-up cueing and top-down verification, multiple binding and 
(grammatical and typographical) categories on multiple levels of 
representation. Even in a simple implementation, it would enforce the 
specification of these details as part of the theory. 

- Psi agents need to learn extended symbol use. A doctoral thesis by Johanna 
Künzel provides an interesting start using agrammatical three-word sentences 
with a fixed symbol-referent relation (Künzel 2004), where agents 
automously acquire labels for spatial relationships, actions and objects, and 
can use these to recognize partially described situations later on. Further work 
needs to be done to handle ambiguity, polymorphy and inheritance, and the 
learning of grammatical constructions to express roles, role-related situations 
(using verbs), attribution, temporal relations and so on. An interesting way to 
continue research on symbol use with Psi agents could consist in the adoption 
of Luc Steels’ multi-agent language acquisition paradigm (Steels 1999, 2004), 
where groups of agents collaboratively co-evolve mental representations and 
linguistic descriptions of perceived objects and situations.  

- Luc Steels’ paradigm might also prove fruitful to extend interaction between 
Psi agents by enforcing mechanisms for joint attention (agents need to agree 
on topics and aspects in order to communicate), and to test models for 
communicative intentionality, for instance, by comparing settings in which 
communicative goals are secondary goals of affiliation, pain avoidance, 
uncertainty reduction or sustenance, as opposed to a model of motivation 
where communication is a goal in itself. Where communication aids 
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secondary goals (such as searching for food), agents may also need to 
represent properties of individual speakers, such as trustworthyness and 
competence, as annotations of the knowledge derived from their utterances. 

- The application of linguistic descriptions to real-world situations enforces 
mechanisms for the dynamic creation of alternative representational 
hierarchies, the abstraction of situations and episodes into scripts and the 
extension of such scripts by expressing specific differences present in a given 
case, the handling of inconsistent descriptions, retraction and assertion of 
hypotheses, and the maintenance of multiple parallel and partially 
synchronized streams of events. 

 
Obviously, completing the Psi theory by adding linguistic capability even along the 
few lines sketched above is going to involve tremendous amounts of research. Given 
the approach of the Psi theory—using implementations as models—the accurate 
depiction of specifically human performance, as for instance opposed to primate 
cognition, is clearly outside its current scope. On the other hand, the Psi theory frames 
an image of cognition far wider than specifically human behavior. In providing a 
model of grounded mental representation, of the interaction between representation 
and perception, of action regulation using cognitive moderators and of a polythematic 
motivational system, it delivers a conceptual framework to capture ideas of general 
intelligence (Voss 2006), of human, animal and artificial problem solving in the face 
of a noisy, heterogenous, open, dynamic and social environment. 

Dörner’s paradigmatic implementation reflects this—his agents are not simplified 
humans or idealized gerbils. Instead, they are things like the steam vehicle of the 
island scenario—autonomous cybernetic systems at an early stage of developmentt, 
confronted with a complex and demanding world. In the case of the “mice 
simulation” (Dörner and Gerdes 2005), they are not authentic vermin, but abstract 
critters: the product of an artificial life evolution over the motivational systems of 
simple collaborating creatures. The Psi agents could be autonomous robots, set for 
exploration and resource prospection, or hypothetical aliens like Masanao Toda’s 
fungus eaters (Toda 1982; Pfeifer 1996; Wehrle 1994). The Psi theory attempts to 
explain human cognition by exploring the space of cognitive systems itself, 
something it shares more with models originating in AI, like GPS (Newell and Simon 
1961), Soar and CMattie (Franklin 2000), as opposed to those models that are tuned 
to mimic human regularities. The Psi theory rather deals with the question of how 
cognition works, than of how humans perform it. 

2.3.4 Representations in the Psi model 

The details of Dörner’s neurosymbolic representations have been laid out in the 
previous section already, and I will not recapitulate their description here. As we have 
seen, they are not defined as a formal calculus but given implicitly as part of 
implementations, or by relatively informal descriptions, by sketching neurosymbolic 
building blocks and ways of combining these into object descriptions, protocols, 
behavior programs. These descriptions are detailed enough to allow a comparison 
with production based approaches or classical connectionist systems in the abstract 



 
 

 
 
 

164 The Psi theory as a model of cognition 

and to illustrate how a computational system may perform cognitive processing. On 
the other hand, their definition is too shallow to be translated into a formal calculus 
with well-defined properties that could be related to existing approaches in logic-
oriented AI. Unlike Soar and ACT-R, which rest on sparse formal definitions of how 
representation and reasoning are to be performed (within a given class of models, i.e. 
a software revision of the modeling toolkit), Dörner has abstained from constraining 
his theory to a single narrow model. Although this reflects the nascent state of the Psi 
theory and poses a problem for someone interested in actually implementing a model 
of the theory, it may not completely be devoid of virtue: Where other theories fall 
back on formal models, they are burdened with either providing a complete solution 
of the problem how cognitive processing is performed, or deliberately specifying a 
system that does not explain cognition (because it simply can not do what the mind 
supposedly does), and because—to my knowledge, at least—no one has succeeded 
yet in the former, i.e. in formalizing a complete solution of the problem of cognition, 
it is invariably the latter. Because the “nice”, formal models are so far incomplete 
sketches of cognitive processes, they either do not go beyond addressing some 
modular piece (and have to assume that cognition can be disassembled into such 
modular pieces, one at a time, such as emotion or speech or vision or learning), or 
they provide some kind of AI programming language along with the claim that the 
brain implements this language at some level, and further understanding of cognition 
involves writing programs in that language. In this sense, Soar and ACT-R are 
definitions of programming languages, along with interpreters and established 
software engineering methodologies. These languages include specific constraints 
intended to capture how humans process information, such as noise, decay, delay and 
so on, yet both are probably too powerful, because they allow the specification and 
execution of programs outside the scope of human cognition, and seemingly fall too 
short, because they exclude likely architectural constraints such as cognitive 
moderators. 

Clarion, as we have seen, goes beyond the level of a programming paradigm 
because it presents a more complete picture of cognition: it includes a more fine-
grained architectural definition than ACT-R and Soar, and it addresses motivation and 
moderation—in these respects, it is similar to the Psi theory. On the other hand, it 
subscribes to a much narrower neurosymbolic formalism than the Psi theory. While 
this formalism is less constrained than a classical production based system (and gives 
up some convenient properties of these systems), it restricts itself to a two-layered 
representation and a certain set of learning paradigms, which are not necessarily 
backed by experimental results or possess neurobiological plausibility. When 
implementing models of the Psi theory, we are forced to similar commitments, i.e. by 
attempting to find solutions to given problems (planning, representation of the 
environment etc.), a representational methodology has to be specified, and because 
we are far from understanding the details of human cognitive functionality, this 
specification will make the models better and the theory worse. The models become 
better, because they capture more functionality, and the theory becomes worse, 
because its further specification entails compromises between the need to engineer a 
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working formalism and the constraints presented by our current, limited 
understanding on how to build a system cabable of general human cognition. 

In the next section, we will discuss MicroPsi, which constrains the Psi theory into 
such a sub-set: in order to construct a framework for designing agents, we have to fill 
in engineering details and thereby throw away options for better design, for the time 
being at least, until the theory achieves a better resolution. While the current 
resolution is too low to allow a complete formal specification, let me sketch some 
statements here; we will need them in order to discuss the state of the theory as laid 
out in Dörner’s publications and implementations and point out some specific 
advantages and shortcomings. 

 
Dörner’s simulation environments consist essentially of vectors of discrete, 
technically distinct features 

 ( ){ }: ; ,   f gFeatures ID featureVector f g Features ID ID≠ ∈ → ≠  (2.7) 

which are organized into objects: 
 :featureFromObject Objects ObjectStates Features× →  (2.8) 

Objects fall into several categories, especially the terrain of the location (which is 
uniform over a location), and the distinguishable visual objects. The latter are 
spatially distributed over locations, each inhabiting a two-dimensional bounding box 
that is not overlapping with any other bounding box.  
 :objectsAtLocation Locations LocationStatesObjects× →  (2.9) 

 ( )2 2:visibleObjectsAtLocation Locations LocationStates Objects× → × ×ℕ ℕ  

  (2.10) 
Within the visible objects, there are spatially located features, i.e. each of these 
features has a location ( ) 2,i j ∈ℕ , such that there is exactly one corresponding object  
with the bounding box ( ) 2 2, ; ,x y b h ∈ ×ℕ ℕ at the given location, where 

;x i x b y j y h≤ ≤ + ≤ ≤ + . 
Locations make up the vertices of a graph, where the edges correspond to 

transitions between these locations.  
 : , | ( , ) :World V Locations E V V i j E i j= ⊆ ⊆ × ∀ ∈ ≠  (2.11) 

Locations are defined as areas of influence, that is, only objects at the same 
location may interact with each other. 

In the island simulation, locations do not overlap, i.e. an object can only be at a 
single location at a time. In the 3D island environment, the world is continous, i.e. 
there would be an infinite number of overlapping locations. We may ignore this here, 
because there is currently no Psi agent that reasons autonomously over such an 
environment. Likewise, in the “mice” simulation, there is a continuous2D 
environment, but no objects. Here, the agent interacts with immutable terrain types 
and other agents, which simplifies the problems of representation. A generalization 
would have to take these possibilities (and more) into account. As it is, Dörner’s 
implementations of objects in agents’ world models can not cope with overlapping 
locations and locations within locations. 
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From the point of view of the agent, there is an object that is part of every 
location: the body of the agent itself. The features of this object are the agent’s body 
states; they are manipulated by the environment (for instance, if the agent takes 
damage, uses up or replenishes internal resources) and are accessible at all times.  

States in the world differ on the level of locations (i.e. objects may move from one 
location to another) and of objects, i.e. if an object changes, then the associated 
features may change too, and every change of a feature corresponds to a change in the 
state of the object. Removal and addition of objects can trivially be treated as changes 
to or from a special “disappearance” state, or by the transition to or from an 
inaccessible location. 

An event is a change in a state of a location (i.e. moving of an object) or in the 
state of an object, and may be caused simply by the progression of time, or by current 
object states demanding such a change. Thus, the simulation environment needs to 
implement a state transition function to effect these changes.  

Let objectsAtLocation(l,t) be the set of objects at a location l at timestep t, 
objectStates(l,t) the corresponding object states, and reachableLocations(l) the set of 
locations m for which exists an edge from l to m in the location graph. Updating the 
objects is matter of checking for demand-changing states of objects at the same 
location. Such states would for instance correspond to a burning object that lights up 
other objects in its neighborhood and turns into ashes itself. 

( ) : ( , ) ( , ) ( , 1)updateObjects l objectsAtLocation l t objectStates l t objectStates l t× → +  

  (2.12) 
In addition, we need a transition function to move objects from one location to 

another. 
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  (2.13) 
This function evaluates object states corresponding to locomotion. If an object is in a 
state that demands a locomotion event, it is transferred to another location along one 
of the edges of the location graph, provided such an edge exists. This “transfer” 
amounts to deleting the object from the set of objects at the current location, and 
adding it to the set of objects at the target location. (The state may also demand a state 
change in the next object state, which brings locomotion to a halt.) 

The agent is represented in the world as a specific object, with a certain location 
and states that correspond to its actuators. These actuator states 

1... nact act Actuators∈ are set from within the agent, as part of its internal information 
processing. For example, if the agent attempts to locomote, its representational 
structure sets one (or several) of its object states (the ones corresponding to actuators) 
in such a way that the transition function transfers the agent from one location to 
another. There are specific actuators approach(x,y) and focus(x,y) that correspond to 
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moving a manipulator and a foveal sensor in two dimensions within the visual space 
of the location. The state of the manipulator determines, via the bounding box of the 
approached object, on which object specific operations are performed. In this way, it 
is possible to manipulate individual objects by first approaching them, then triggering 
an operation. The position of the fovea sensor determines the coordinates at which 
spatial features within a visible object are sampled. This sampling works by 
transferring the state values of the features at the position specified by focus(x,y) into 
the sensory array of the agent. 

In general, sense data are transferred to the agent through an interface function 
( ), , ( , )sense location locationState focus x y Sensors→ , which maps the features of 

the objects at the current location to the input array Sensors, and a similar function 
( ), , ( , )act Actuators location approach x y objectStates→ . 
 

The agent builds representations grounded in the array of Sensors, whereby each 
sensor has a real-valued activation that is set by the interface function sense, and 
effectuates changes in the world by changing the activation values within the array of 
Actuators.  

Generally, representations consist of nodes N (called quads), which include the 
sensors and actuators, and relations between these nodes. The Psi theory specifies the 
basic relations  

- por(i,j): node j is the successor of node i, i.e. the object referenced by j 
follows the object referenced by i in a sequence of features, protocol elements 
or actions,  

-  sub(i,j): node j is partonomically related to node i, i.e. the object referenced 
by j is a part of the object referenced by i: it is a sub-object, a feature or an 
attribute, 

and their inverses ret (the counterpart to por) and sur (the opposite of sub). These 
relationships are implemented as typed links between the nodes, which may be 
controlled by switches (activators). These control the spreading of activation along a 
link-type and thereby allow tracing the relationships of representational units. 

While the relational links are weighted and signed and can thus express partial 
degrees of these relations, Dörner’s discussion deals with the semantics of binary 
links with weights of zero or one. 

The set of representational entity E may thus be described as: 

  

:

( , )

( , )

e E e Sensors Actuators

i N j E e sub i j

i E j E e por i j

∈ ↔ ∈ ∪
∨ ∈ ∧ ∈ ∧ =
∨ ∈ ∧ ∈ ∧ =

 (2.14) 

In other words, the simplest representational units are individual sensor nodes and 
actuator nodes. All other units are made of these parts, or of other units, by chaining 
them into sequences, or by arranging them in a partonomical hierarchy (a tree of part-
of-relationships) with sensors and actuators as the lowest level. Representational 
entities include object definitions, scenes, plans and protocols (procedural 
descriptions of actions and episodes). For instance, a plan may consist of chains of 
actuators that are arranged hierarchically, and there may be additional chains on each 
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level of the hierarchy, i.e. every step of the plan consists of a sequence of sub-steps, 
made up of more elementary steps, until actuators mark the atoms of the plan. Plans 
are executed by spreading activation along the por-links, unless a node has a sub-link, 
in which case the activation is spread to the sub-link first.101 If a node has more than 
one sub-link, then activation may be spread along all of them at once and the sub-
sequences are executed in parallel. 

The inclusion of sensor nodes makes plans conditional. The execution only 
continues past the sensor if the sensor becomes active (i.e. if the corresponding 
environmental feature delivers activation via the sense function). In this way, 
behavior sequences may be formulated. 

Objects may be recognized using a plan that checks for all their sensory features. 
In the terms of the Psi theory, an object description is a plan to recognize that object. 
By nesting such recognition plans in sub-linked hierarchies, objects may be defined 
using sub-objects, scenes may be defined using objects that are part of the scene, 
episodes may be stored using sequences of scenes. 

Usually, behavior sequences will be interleaved with object descriptions, and vice 
versa, because the execution of behaviors usually requires that the agent checks for 
available resources, preconditions and postconditions, and the recognition of objects 
requires behavior sequences, such as moving the retinal sensor to focus individual 
features (before checking them) or using the locomotory actuators to get to the 
appropriate location. 

Demands are expressed as specific sensors, i.e. these sensors become active when 
demands are satisfied, remain active or are increased. By linking to demands, the 
relevance of elements, plans, protocols and object descriptions for the well-being of 
the agent can be expressed. As discussed in the first section, a wide range of semantic 
relations can be addressed with the basic relationships:  

- Partonomic relations express the relationship between a whole and its parts. 
They are equivalent to sub-links between an element and its parts, and sur-links 
for the opposite direction. 
The same type of link is also used to express the relationship between a concept 
and its attributes in the abstract, because these attributes can be interpreted as 
parts, and vice versa. 

If two entities are sub-linked from the same parent and are mutually exclusive, then 
they stand in a relationship of co-hyponymy (they are “co-adjunctions”).  

- Succession of events and neighborhood of features is expressed using por-links. 
Such chains may also represent behavior programs. If these chains branch, 

                                                 
101 To properly execute plans this way, it has to be ensured that subsequent steps become active 
subsequently, and not before sub-linked chains of steps of their predecessors are finished. This 
can be achieved in several ways: by adding additional inhibitory links, by implementing a back-
tracking scheme that maintains a pointer and a stack to keep track of the branches in the 
execution, by using a state-machine within the nodes and information on whether their 
neighbors are active, by transmitting messages with the activation, or by establishing temporary 
links acting as indicators of execution states within the plan. Dörner does not discuss any of 
these, though. The implementation within the Island simulation uses centrally controlled back-
tracking instead of activation-spreading. 
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contextual (additional) activation and inhibition may be used to decide which 
branch to follow, so it becomes possible to express conditional plan segments. By 
reinforcement learning (selective strengthening of the links) and ‘forgetting’ 
(gradual decay of the links), the agent may acquire a library of behavior 
strategies. 

- Predecession is expressed by ret-links. (If there is a por-link between two entities 
e1 and e2, then there is usually an inverse ret-link between e2 and e1.) 

Dörner also suggests that por and ret express causation, i.e. the expression por(e1, e2) 
implies that that an event e2 is caused by the other, por-linked event e1. There is no 
distinction between correlated successive occurrence and causation here, and if it was 
to be made, it would have to be added on top of this basic description using linguistic 
labeling. Thus, there is no difference between a predecessor role of an entity and its 
causative role. The weight of the link and the number of links may express the 
expected likelihood of succession/causation, which results, when properly evaluated, 
in a Bayesian network (see Russel and Norvig 2003, p. 492). This is the case when the 
link strength is purely derived from co-occurrence of events. If events have appetitive 
or aversive relevance, the reinforcement learning of the agent will strengthen their 
links disproportionately to the Bayesian rule, to express motivational relevance. 

- Spatial relations are annotated por/ret-relations. Here, entities that are grounded 
in visual features (i.e. with the lowest sub-linked level being visual sensors) are 
connected with chains that contain actuator commands to move the fovea (the 
visual sensor arrangement) or the agent (which includes the visual sensor 
arrangement). In other words, there is a structure por(e1, e2); por(e2, e3), where e1  
is a visual description of a feature as a sub-linked chain, e3 is likewise the visual 
description of another feature, and e2 is a motor command (as a sub-linked chain 
of actuators) to move between the relative positions of e1 and e3. Dörner calls (e1; 
e2; e3) a triplet. 
As shorthand, the motor command e2 to move the fovea might just be expressed 
with a pair of numbers that annotate the link between e1 and e3. This pair (x,y) is 
interpreted to actuate the equivalent of vertical and horizontal foveal muscles, so 
the visual sensor set is moved through the scene. 

- An instrumental relation (here: the relation between two world states and the 
behavior that changes between them) is represented using a triplet of two world 
descriptions e1 and e3 and an intermittend change-action e2. The instrumental 
relation is then the sub-link that connects e2 to a behavior program. According to 
the triplet concept, an instrumental relation would be a sub-link from a protocol 
element (denoting the change-event) onto a behavior program (or a sur-link in the 
inverse direction). If e2 is sur/sub-linked to an entity denoting an agent, then the 
sub-link between agent and action expresses an actor-instrument relationship. 

- Temporal relations are expressed as extensions of the successor/predecessor 
relation by annotating these with weights that are interpreted as delays (when 
executing plans) or durations (when recalling protocols). Dörner suggests to use 
the weight of the por-links directly, but this will conflict with the Bayesian 
weights, or with the motivational relevance that is normally captured in these 
links. A straightforward and logical way of expressing delays and durations may 
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work analogous to the spatial relations; only instead of using a spatial actuator, 
we would use a “temporal actuator”. Such a temporal actuator amounts to a clock 
that waits during plan execution/perception, or a mechanism to retrieve 
temporally distant elements of the protocol during memory retrieval. As 
shorthand, we may add a temporal annotation to the links. While this is a viable 
engineering solution to the problem of representing some aspects of the passage 
of time, it is probably not a good model of how the human cognitive system deals 
with time. It is unlikely that the temporal code is just a degenerate case of a 
spatial code.102 

- Appetence relations are por-links between a demand indicator and a situation/a 
behavior program that fulfills the respective demand. Conversely, aversive 
relations are connections between a situation of demand frustration (for example 
an accident) with the respective demand indicator (for example the demand for 
integrity). Although both relations are por-links, their semantics are different 
from por-links within protocols and behavior programs, because the demand 
activators are used as activation sources during behavior planning and identify 
appetitive (positive) and aversive goals. 

- A final relation is the connection between a behavior and its goal. In the Psi 
theory, a goal is a situation that is associated with a motivational value, in other 
words, an entity associated with a demand indicator. Different from ACT-R, 
Clarion and Soar, there is no goal stack or goal list. Sub-goals exist only 
implicitly, as situations that are prerequisites to reach the goal-situation. Also, 
goals always have to be associated with a motivational relevance, because the 
semantics of goals stem from the pursuit of goal situations, and Psi agents only 
pursue motivationally relevant situations actively. Thus, goals are less abstract 
than in most other cognitive architectures—the experimenter has to set up 
experiments in such a way that the agent “gets something out of” the desired 
behavior. 

 
There is no proper “is-a” link in the Psi theory’s representations, so it is difficult to 
express types and classes. For instance, to express the relationship between an object 
and a linguistic label, we may treat the linguistic label as a (sub-linked) attribute of 
that object. But it is not clear how this label would be distinguished from a proper 
part. Using “is-a” links, we could express that the linguistic label “is a” label, and the 
object “is-a” referent of that label, as in many other semantic network schemes.103 

                                                 
102 Time seems to be cognitively fundamentally different from space, even though 
geometrically designed representational systems, such as interval calculi (van Allen 1983), may 
treat them as analogues. But it is unlikely that humans universally resort to geometric 
description systems, rather, representations are probably organized as objects/situations, which 
may have additionally locations and spatial extensions. Temporal situations, on the other hand, 
are all part of timelines, with events being at least partially ordered. The latter leads to “mental 
object trajectories”, with the temporal dimension being more or less identical to the causal 
dimension. (See Anderson 1983, p. 51, for additional arguments.) 
103 When confronted with that difficulty, Dörner’s group has introduced ad hoc-link-types into 
particular implementations, for instance lan for linguistic labels, and col for colors. While the 
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Another aspect of “is-a”, the accommodation of a schematic description for less 
abstract descriptions, can of course be expressed implicitly. For instance, it is possible 
to have vague, generic description of a cat that would match the majority of cats, and 
a more detailed description that only matches a single individual cat. By checking for 
multiple matches, an abstract-concrete relationship could be established—but this is 
limited to those cases in which the abstract schema is indeed simply less detailed than 
the concrete one, or in which the matching is performed using linguistic labels. 

 
Dörner’s representations may be used by tracing links directly, using temporary 
“pointer links”, which are connected to individual entities or sets of entities using an 
associator. (So-called associators and dissociators may establish or remove links 
between currently active entities; for this, they will have to be connected to the same 
associator or dissociator entity.) The other mode of usage relies on spreading 
activation, starting from source nodes, along the individual link types. Since links can 
be switched depending on the state of activators (there is an activator entity for every 
type of link within a group of entities), the spread can be directionally constrained. 
Combining these methods, the representations of the agent act as a model of its 
environment and as acquired control structures. For instance, if the agent is exposed 
to environmental features, the activity of sensors “stimulated” by these features may 
spread activation to object hypotheses that contain the respective sensors, and these 
object hypotheses may be validated by executing each of them to find an 
interpretation. Likewise, if a demand (represented by a sensor corresponding to a 
body state) arises, links to behavior sequences that have led to the satisfaction of the 
demand in the past can be followed, the objects involved in these sequences can be 
identified, the scenes containing these objects can be found, and the agent may 
attempt to retrieve or even construct a plan that brings it from the current scene into a 
situation that satisfies the demand. 

In the above description, Dörner’s partonomic hierarchies are symbolic, i.e. each 
node is the root of a representational entity. However, they may also easily be 
extended into semi-symbolic descriptions by using real-valued link weights. By 
interpreting the representational hierarchies as feed-forward networks, sensory nodes 
may become the input layer of perceptrons (Rosenblatt 1958) that classify objects, 
with higher-level nodes acting as hidden layers. Actuator nodes may be addressed 
using real-valued activations as well, allowing subtle control of the agent’s 
movements and activities. 

2.3.4.1 The grounding problem of mental representat ion 
As we have seen, mental representation, the question of how a system may store 
information about the environment and itself, and how it may manipulate this 

                                                                                                                     
color-link is arguably obsolete, because it is possible to identify the color aspect of an attribute 
by the connected sensor elements, the problem itself is very real: The Psi theory needs a 
mechanism to define new link semantics, whenever the need arises, and in most general 
purpose semantic network formalisms, this is done using “is-a” (Sowa 1984, 1999; Russel and 
Norvig 2003, p. 366). 
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information, is central to the Psi theory. Dörner’s focus on how a system relates to its 
environment has changed, however, over the years, from a monolithic input driven 
system (Dörner, Hamm and Hille 1996) to the perspective of autonomous, situated 
agents (Dörner 1999, 2002) and eventually towards a multi-agent system (Dörner and 
Gerdes 2005). 

In an extension of his 1957 classic, the Star Diaries, the famous Polish 
philosopher and science fiction author Stanislaw Lem (who was a friend of Dietrich 
Dörner and influenced his view on psychology and cybernetics in many ways) 
described a non-interactive virtual reality (Lem 1971). Built by the mad and 
embittered scientist Professor Corcoran, it consists of rotating drums, in which 
magnetic tapes store pre-recorded sense-data. These data are electrically fed into rows 
of boxes containing “electronic brains” (“each of these boxes contains an electronic 
system generating consciousness”). Each of the “brain boxes” has got “organ 
receptors analogous to our [human] senses of smell, taste, touch, hearing”, and “the 
wires of these receptors - in a way, the nerves - are not connected to the outside 
world,” but to the prerecorded data, which describe the perceptual aspects of a 
complete solipsist universe: “the hot nights of the south and the gushing of waves, the 
shapes of animal bodies, and shootings, funerals and bacchanals, and the taste of 
apples and pears, snowdrifts, evenings that are spent with families at the fireplace, 
and the cries aboard a sinking ship, and the convulsions of disease.” This pre-
recorded universe is not completely deterministic, because “the events in the drums 
are inscribed on rows of parallel tapes, and a selector only controlled by blind 
randomness” chooses the sense-data of each “brain box” at a given time by switching 
between these tapes. There is no feedback from the “brain” to the world, however, i.e. 
the recordings are not influenced by decisions of the “brains”, and the different brains 
are not interacting with each other (they are “Leibnizian monads, clad in matter”). 
This perspective is mirrored in Dörner’s and Hille’s EmoRegul model: here, the 
system is fed a pre-recorded or random stream of events. Some events act as 
predictors for other events, and the system learns to anticipate aversive and appetitive 
situations. 

In classical modern logic (see, for instance Carnap 1958), we start out with a 
domain of objectively given objects—typically individuals. These individuals are 
distinct and identical only to themselves, and they are treated as the atoms of 
meaning; what constitutes these objects if not really of interest to the model. 

For a Psi agent, objects are not objectively given as individual entities. Individuals 
do not make up an empirically or ontologically given type (see Montague, 1973, for 
an example of how individuals are postulated in formal semantics). 

The Psi agents start out with patterns which they strive to organize. For instance, 
in the case of visual input, the patterns are ordered into types (with specific sensors 
that are sensitive to certain elementary pattern arrangements). These in turn are 
abstracted into Gestalts, which make up shapes, and these in turn are parts of visual 
object schemas. Visual object schemas can have many levels of sub-schemas. Thus, 
objects are constructions of the system, a certain kind of high-level abstraction over 
the input. 
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In much the same way, acoustic input should be processed: basic patterns arriving 
at the cochlear sensors are matched to phonemes and these are eventually abstracted 
into distinct acoustic events (for instance words or particular noises). Objects do not 
necessarily have only one kind of description, rather, they might have many sensory 
modalities of which they are composed and which describe how the object could be 
recognized. 

 
According to Daniel Dennett (1987, p. 213-236), there are three ways in which 
information may be incarnate in a system: explicitly (in the form of interpretatable 
symbols), logically (derivable from explicit information) and in a tacit manner. Tacit 
knowledge does not rely on an explicit representation, but emerges in conjunction 
with the environment, such as the way mathematical axioms are embodied by a 
pocket calculator, hydrodynamic principles are embodied in the movement of a fish, 
and walking patterns emerge from the interaction of neural control and the kinematic 
interaction of body and environment. This tacit knowledge depends on feedback 
between system and its world, and it is fundamental to building mental 
representations of the environment. In a “pre-recorded” environment, it would involve 
the prediction of all actions of the system, and therefore, it is not easily captured by 
Corcoran’s boxes, or Dörner’s EmoRegul (here, actions are missing or ephemeral, 
since they do not influence the environment). 

The Psi agents of the island simulation do not suffer from this limitation. In this 
more advanced instantiation of the theory, the tacit level consists in sensory 
perception and the sensory feedback provided to action (either as somatic response, or 
as change in the environment) via sensory units. Explicit representations, which may 
be localist or distributed (symbolic or semi-symbolic) hierarchies, encode the sensory 
patterns by organizing the activation of the sensory units. Finally, there are 
mechanisms that derive further knowledge from these representations, for instance by 
the acquisition, reorganization and retrieval of protocol memory, and by the 
generation of new plans.  

In Dörner’s architecture, tacit knowledge is addressed on the level of sensors and 
actuators and the behavior programs including them. 
For a look at a schematic example that illustrates this concept, see figure 2.8. The 
representation of an object—a dog, in our illustration—involves its partonomically 
related sensory description and its relationships to other representational units—either 
via sharing episodes with them (such as a cat may be related to a dog if they are both 
part of an event sequence in memory, where a cat and a dog were fighting), or by 
being directly related to the agent’s behaviors. Such involvement might include 
episodic memories of a dog licking the hand of the subject (the Psi agent), thereby 
generating an affiliation signal that triggers the satisfaction of the affiliatory urge of 
the agent. It may also be related to adversive episodes, such as memories of being 
chased by an aggressive dog, where a successful escape was facilitated by running, 
and a failure to escape resulted in taking damage due to an attack of the dog. 
Connections of the “auxiliary sense” of the concept of a dog, to fragments of the 
protocol memory of the agent establish relationships between the appearance of the 
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dog (its sub-linked parts that allow to recognize it) and the actions that dogs afford: 
things like stroking it, or running away from it. 

 
 
Figure 2.8: Grounding of representations according to the Psi theory 

Figure 2.8 also illustrates an auditory signal, the spoken word “dog” that may be 
represented as a sensory schema itself, and is linked to the dog concept as a feature. In 
the context of communication between agents, this special feature acts as a label to 
evoke the concept. 

What is interesting here is that all representations derive their semantics by virtue 
of encoding the patterns corresponding to the features of the environment. Thus, the 
representation of a dog is not simply a set of rules, a pictorial description or the entry 
within some internal encyclopedia. Rather, Dörner’s representations are constructivist 
in nature, the perceptual aspect of a dog is a dynamic classifier over stimulus inputs, it 
is a simplification over a part of the environment, derived by encoding an aspect of its 
pattern into an object and thereby allowing anticipation, planning and communication. 
A dog is not a mnemonic for the programmer of the Psi implementation that refers to 
the programmer’s abstract idea of dogs in the “real” world, or some Platonist “essence 
of dogness”. It is a structured shorthand for a cluster of features. All knowledge 
related to dogs is the product of the evaluation of interaction with the feature clusters 
that have been classified as dogs in the past, or by abstraction and reasoning. If agents 
are able to communicate, they can also acquire knowledge by translating utterances 
into further object descriptions, behavior programs and episodic schemas, but all these 
representations will eventually be grounded in sensors and actuators. 
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The integration of tacit knowledge and the fact that Dörner’s representations derive 
their semantics from their reference to interaction context which they encode, marks a 
departure from symbolic AI’s disembodied, ungrounded calculations. Of course, it is 
not new to AI in general—calls for grounding representations in sensori-motor events 
have been around for a long time (Bailey et al. 1997; Cohen et al. 1997). Where 
purely propositional systems, such as Lenat’s Cyc (Lenat 1990)—and Anderson’s 
ACT-R, too—provide rules that derive their semantics from the constraints inherited 
through reference on other rules, the representations of a Psi agent encode perceptual 
content, learned environmental responses (episodic memory), strategies to elicit 
environmental responses (plans) according to the affordances of the system, the 
relationship between stimuli and demands (motivational relevance) and states of the 
system (cooccurrence of emotional and physiological configurations). This provides 
technical disadvantages as well as conceptual benefits: Psi agents may only represent 
things that are accessible to them through perceptual and actorial affordances, and 
derivations of these things. On the other hand, the experimenter does not have to code 
knowledge into the system, and the system’s knowledge is not constrained to what the 
experimenter bothers to code. In contrast, Cyc and ACT-R may theoretically represent 
everything that can be expressed by their respective propositional languages, but there 
is no guarantee that these representations are depictions of the same semantics that the 
experimenter had in mind when he or she coded them into the system—they might 
just be superficially similar expressions, that is, they might share the propositional 
layer, but lack the functional equivalence.104 Imagine, for instance, the propositional 
encoding of the semantics of a finger, for instance by explaining the partonomic 
relationship of the finger concept to a hand concept and its instrumental relationship 
to the concept of pushing a button—such a representation will require a large set of 
statements and will still be indistinct from other sets of statements with the same 
structural properties (i.e. another cloud of expressions with the same number of 
conceptual entities and the same types of relationships between them). In contrast, the 
grounded representation of a finger may start from the perceptual properties of an 
agent’s own finger, as they are afforded by the sensory stimuli associated with it, and 
the feedback that is provided by motor actions concerning that finger. Here, the 
agent’s hand concept will bear a partonomic relationship to the finger concept as well, 
and button pushing concepts will be derived from the finger’s motor aspects and 
perceptual properties, but the difference is: the representations are aligned to the 
agent’s interface to the environment, and abstractions, as they are used in anticipation 
and imagination, become simulations of what they abstract from. 

According to Lawrence Barsalou, a concept should be seen as a skill for 
constructing idiosyncratic representations (Barsalou 2003), and in a Psi agent, 
conceptual representations are denotations of such skills: actions are represented by 
behavior programs effecting operations afforded by the environment to the particular 

                                                 
104 To be fair: in many experimental setups, the experimenter is only interested in modeling the 
propositional layer, and this is difficult to achieve with Dörner’s Psi agents, as long as they are 
not taught on a linguistic level. 
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system, object representations are behavior programs to recognize and/or internally 
simulate the respective object, episodic memory contains sequences of actions, events 
and object descriptions. The representations within a Psi agent define a perceptual 
symbol system, as opposed to amodal symbol systems (Barsalou 1999). 

 

 
 
 

 
 
Figure 2.9: Modal representations, as opposed to amodal representations (see Barsalou 
1999) 

Barsalou’s plea for making concepts simulators of interaction context is shared by 
many others, especially in the embodied linguistics community (Feldman 2006; 
Bergen and Chang 2006; Steels 2004), because of the demand for a representational 
counterpart to linguistic structure that allows to model the understanding of utterances 
by mentally recreating their objects. However, I don’t think that this argument by 
necessity warrants a philosophical damnation of symbolic systems. It is entirely 
possible to build ungrounded symbolic simulators (i.e. “habitable” environments), 
where the simulation is explicitly programmed by the experimenter. For instance, in 
Terry Winograd’s classical SHRDLU (Winograd 1973), the control program of a 
simulated robot arm converses about its operations in a simulated world of building 
blocks (blocks world). The utterances of the system are not (completely) ungrounded, 
because they refer to the operations and constraints afforded by the simulation. When 
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we test SHRDLU, we are likely to ground our imperatives and our understanding of 
SHRDLU’s utterances in our very own mental simulation of a blocks world, not in a 
real set of toy blocks that we have to have at hand to make sense of what SHDLU 
tells us. There is no immediate theoretical danger in the fact that SHRDLU’s 
simulation is not itself grounded in experiences SHRDLU has made in a physical 
world, whereas our own simulation is probably derived from such experiences, as for 
instance Dreyfus (1997) seems to suggest. For epistemological reasons, making such 
a difference is not meaningful, because there is no point in showing that any two 
representations/simulations refer to the same environment. Furthermore, this is of no 
importance: for conversations between humans about manipulations of a blocks 
world, it would be completely irrelevant if they got their knowledge through 
childhood experiences, contemplation, reading or divine revelation, as long as their 
knowledge captures the same functional properties and relationships. But there is a 
practical danger in using hand-coded, abstracted simulations for grounding 
SHRDLU’s world: SHRDLU’s linguistic utterances might refer to a structurally 
different simulation; SHRDLU might use the same statements to denote a different 
reality. Real toy building blocks have many more properties than Winograd’s 
simplified abstractions: their continuous positions, complex shapes and mass 
distributions, surface friction and inertia allow for constructions (winding arcs, 
upside-down pyramids, domino-chains) that are impossible in SHRDLU’s simulation, 
and which can therefore not be conceptualized. Neither SHRDLU’s simulation nor its 
problem solving methods can simply be extended to capture the world of “real” toy 
blocks, because a description of realistic physical dynamics by discrete rules is just as 
intractable as discrete combinatorial planning over many feature dimensions—
SHRDLU (i.e. this particular symbolic, rule-based approach to a description of a 
blocks world) does not scale (Dreyfus 1992, p. 22). While there are aspects, regarding 
to which the abstract blocks world can claim isomorphisms to a world of real toy 
blocks, the structural similarity quickly breaks down when looking too closely. Of 
course, human mental simulations may be incomplete too—but they do come with 
scaling and revision mechanisms, which may succeed in dealing with the 
inadequacies by dynamically extending, restructuring and adjusting the simulation as 
the conversation goes along. 

The practical danger of using different simulations as objects of reference in 
discourse does not automatically disappear if we force the system to refer to the same 
physical environment by turning it into a robot, by equipping it with video cameras, 
touch sensors, manipulators and locomotion. Since the environment is defined by 
what it affords with respect to interaction and perception, such a robot is unlikely to 
share our environment, one where we may carve wood, climb trees, fix a broken TV 
remote, lick a stamp, peel skin from a sun-burnt nose, serve tea, show guests to the 
door, queue up for theatre tickets, vote in elections, choose a book as a present for a 
friend. While sensory-motor grounding provides a solution to the symbol grounding 
problem in general (Harnad 1997, see also Neisser 1965, Putnam 1975 and Lewis 
1995), what matters is not that the world behind the interface shares the same sub-
atomic makeup, but that the system is able to derive structurally (functionally) similar 
representations. If the experimenter could manually code such representations into the 
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system, they will not be somehow “semantically inferior” to those acquired 
autonomously by the system by evaluating its interaction with a physical 
environment. Also, to many researchers, it is not clear if statistical or weakly 
grounded approaches to knowledge modeling are eventually limited in their success 
(see, for instance, Burgess 1998: HAL; Goldstone and Rogosky 2002: ABSURDIST, 
Landauer and Dumais 1997: LSA). And if a system interfaces with a physical 
environment, but lacks cognitive facilities for processing the resulting stimuli 
appropriately (which is probably true for the computer vision systems of today, for 
instance), if it does not have the motor skills to enable rich interaction, or lacks the 
cognitive apparatus to incite motivational relevance, social interaction and so on, then 
this interface to the physical world will be insufficient to ground symbols for human-
like cognitive processing. 

There may not be strong theoretical (philosophical) reasons for asking for sensory-
motor grounding of mental representations of every conceivable cognitive system in a 
physical reality, by there are strong practical reasons for constructing a model of 
human cognition in such a way that its representations refer to the structures of an 
environment. This is what the embodiment of a cognitive system delivers: not the 
sparkling touch of a mystery “reality substance”, which somehow ignites the flame of 
true cognition, but—possibly—a suitable set of patterns to constrain the 
representations of the system in a way similar to ours, and a benchmark that enforces 
the use of autonomous learning, the genesis of problem solving strategies, the 
application of dynamic categorization of stimuli and so on. 

2.3.4.2 Properties and limitations of representatio ns in the Psi theory 
How can Dörner’s style of representation be classified? Because Dörner’s basic 
neural elements are used to construct basic semantic units (quads) that form a network 
capable of Hebbian learning, Dörner calls it a neural network. Although this is not 
incorrect, it might be more accurate to term it a hierarchical causal network or belief 
network (Good 1961, Shachter 1986), because the nodes typically represent features 
or cases (see Russel and Norvig 2003, p. 531). (Belief networks are often also called 
Bayesian networks, influence diagrams or knowledge maps.) 

The organization of memory is also somewhat similar to Case Retrieval Networks 
(CRN) (Burkhard 1995) from the domain of Case Based Reasoning. Here, sensory 
nodes are equivalent to Information Entities (IEs), and schemas are called cases. If 
schemas are hierarchical, intermediate schemas are equivalent to concept nodes. 
Horizontal links (ret/por-connections) are somewhat comparable to similarity arcs, 
while vertical links are akin to relevance arcs. Especially during memory retrieval, the 
analogy to CRNs with spreading activation (SAN) becomes obvious. Again, there are 
some differences: similarity arcs in CRNs are undirected, which often leads to 
problems if the activation is spread more than one or two steps due to loops in the 
linking of the IEs (Lenz 1997). On the other hand, ret/por-connections do not really 
depict similarity but relate elements at the same level of a belief network, so the 
process of spreading activation does not only find new, similar super-schemas (cases) 
but activates more details of the currently activated structures. 

Because of the hierarchical structure and a specific mode of access using cognitive 
modulators, there is also some similarity to the Slipnet of the CopyCat architecture 
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(Hofstadter 1995; Mitchell 1993). Like the Slipnet, the quad net uses spreading 
activation and allows for analogy making in hierarchical concepts by way of allowing 
conceptual ‘slippages’, in CopyCat controlled by a parameter called ‘temperature’; in 
Psi using the resolution level parameter. (There are differences in the actual usage 
between ‘temperature’ and ‘resolution level’—the former allows to control the level 
or hierarchy where slippages occur, and the latter also affects parameter ranges and 
element omissions). By the way, this is the only way in which the Psi theory 
addresses similarity: here, it is always spatial/structural similarity. The degree of 
similarity is reflected by the amount of detail that has to be neglected to make one 
representational structure accommodate another.105 

The quad structures are not just a mechanism to address content in memory (as 
many other spreading activation schemes), they are the building blocks of mental 
imagery, causal and structural abstractions and so on within the mental structures of a 
Psi agent. Chains of quad or directly linked individual neural elements may also form 
control structures and act as behavior programs, forming a library that is similar to  
CopyCat’s codelets or the coderack  in Stan Franklin’s ‘conscious agent architecture’ 
(Franklin 2000).  

Dörner maintains that the Psi theory uses schemas to represent objects, situations 
and episodic sequences (scripts). Schema architectures have been around in Artificial 
Intelligence for quite some time (see Bobrow and Winograd 1977; Minsky 1975; 
Rumelhart and Ortony 1976; Schank and Abelson 1977). Dörner’s descriptions seem 
to be missing some key elements, such as typed links (or some other way to express 
types) and distinct slots for attributes. The latter might be expressed by sub-linked 
chains of por-linked elements, however, and an extension for typed links, even though 
it is not part of the theory, is relatively straightforward (as we will discuss in the next 
section, where MicroPsi is discussed). 

Dörner uses his schemas as ‘modal’ representations—the schema representations 
in his model are grounded in perception. But should representations really be 
schematic, instead of neural, distributed, “more biological”? Dörner's implicit answer 
to this objection is that there is no real difference between schemas and neural 
representations. Rather, the typical schemas of symbolic reasoning might be seen as a 
special case of a neural representation - a very localist, clear-cut and neat neural 
arrangement the system arrives at by abstraction processes. Such localist schemas are 
prevalent at the 'higher', more abstract levels of cognition, but they are not necessarily 
typical for mental representations. The majority of schemas might look much more 
‘scruffy’, sporting vague links and encoding ambiguities. While abstract, localist 
schemas might often be translated into sets of rules (i.e. clauses of a logical language), 
this is not true for the more distributed schema representations of the lower levels of 
perception and motor action. (Theoretically, every neural network with a finite 

                                                 
105 Structural similarity is only one of many perspectives. Other approaches to capturing 
similarity include measuring the differences between two instances (contrast model: Tversky 
1977), spatial organization (Shepard 1957), alignment models (Gentner and Markman 1995), 
transformational models (Hahn, Chater and Richardson, 2003) and generative methods (Kemp, 
Bernstein, Tenenbaum 2005). None of these has been addressed in the context of the Psi theory. 
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accuracy of link-weights can be translated in a set of rules—but this set might be 
extremely large, and its execution using an interpreter might be computationally 
infeasible.)  

This is not a new idea, of course; it has often been argued that there is not 
necessarily a true antagonism between rule-based systems and distributed systems 
(Dyer 1990). Instead, rule-based representations are just a special, more localist case 
of a distributed representation. It might even been argued that because there are feats 
in human cognition, such as planning and language, which require compositionality, 
systematicity and atomicity, there has to be such a localist level even if cognitive 
functionality is best implemented in a distributed mode. Indeed, this is a point 
frequently made for instance by Fodor and Pylyshyn (1988), and more recently 
Jackendoff (2002), who argues that the distributed representation must implement 
localist functionality to satisfy the constraints imposed by language. 

The ability of Dörner’s neurosymbolic framework to capture (at least 
theoretically) both distributed and symbolic representations using the same elements 
sets it apart from many other cognitive architectures, such as Soar, which is symbolic, 
and Clarion, which is a hybrid that utilizes symbolic and sub-symbolic layers. But 
even though it is not based on productions, the schema representations bear 
similarities to the propositional network representations in Anderson’s ACT-R. Like 
in ACT-R (see Anderson 1983, p. 47), the Psi theory suggests three kinds of basic 
representations: temporal or causal sequences of events (protocols/episodic sequences 
in Psi), spatial images (compositional schema hierarchies with spatial relations) and 
abstract propositions (abstractions over and independent of perceptual content). But 
unlike Anderson, Dörner does not attempt to mimic the specifics of human memory, 
so he imposes fewer restrictions: for instance, in ACT-R, sequences are limited to a 
length of about five elements. To encode more elements, these sequences will have to 
be organized into sub-strings.106 While this restriction is helpful in reproducing limits 
of random access to elements in short-term memory, it is inadequate for well-
rehearsed long-term memory sequences that are primarily linked from each element to 
its successor, like the memorized alphabet. The Psi theory is currently unconcerned 
with the problem on recreating the specifics of human memory, instead, it attempts to 
present the technically most simple solution to the problem of hierarchical memory at 
all. 

Dörner takes neither a completely pictorial perspective on mental representation in 
general, nor a propositional point of view—but with respect to mental images, he 
might perhaps be called a pictorialist. Pictorialism (Kosslyn 1980, 1983) maintains 
that mental representations of imagery takes on the form of pictures, and mental 
images are seen like visual images. Dörner points out that the representations may 
include abstract and ambiguous relationships (like “nearby” instead of “to the left of” 
or “to the right of”) that can not be directly and uniquely translated into an image. 
                                                 
106 This restriction is often abandoned in newer ACT-R models. Limitations and individual 
differences of working memory capacity are also often explained by differences in available 
activation (for retrieval by spreading activation, see Anderson 1984). (Daily, Lovett and Reder, 
2000, 2001). Soar does not use any structural limits on working memory at all and does not 
model this aspect of human cognition directly. (Young and Lewis 1999) 
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However, he suggests to implement a visual buffer (Baddeley 1986, 1997; Reeves and 
D’Angiulli 2003)  as an “inner screen” (Dörner 2002, p. 121-122), where a pictorial 
prototype might be instantiated using the more general, abstract representations—by 
filling in the “default” with the highest activation (Dörner 1999, p. 604-611). This is 
consistent with Kosslyn’s suggestion of two levels of mental imagery: a geometric 
one, which lends itself to image manipulation, and an algebraic one that captures 
abstract relations and descriptions (Kosslyn 1994).107  

This approach is different from descriptionalism (Pylyshyn 1984, 2002), 
according to which mental images are just the product of manipulations of knowledge 
encoded in the form of propositions. Propositions (essentially: rules) are the basic 
element of knowledge representations, and define the knowledge level, which 
represents actions as functions of knowledge and goals, and the symbolic level, which 
codifies the semantic content of knowledge and goals. (On the physical level, these 
rules may be represented as neural networks nonetheless.) Decriptionalism tends to 
identify thinking with linguistic productivity and is still widespread in Cognitive 
Science.108 

In a pictorialist framework, one would expect the use of sub-symbolic 
representations on all or most levels of the hierarchy, and yet, Dörner’s 
implementations of world models are symbolic, in the sense that the representational 
entities define semantic units, as opposed to distributed representations, where an 
individual representational entity does not refer to a meaning on its own, and the 
semantics are captured by a population of entities over which they are supervenient. 
Beyond the current implementations, the Psi theory hints at the incorporation of 
distributed and fuzzy representations—but mainly at the lowest levels of the cognitive 
processes, and these receive relatively little attention in Dörner’s descriptions. Above 
that, all link weights are set to zero or one: Dörner’s networks are basically the 

                                                 
107 According to Kosslyn, this is reflected in different visual processing modules in the brain: 
he separates the visual buffer, the attention window (which selects a pattern of activity), the 
cortical visual systems, the ventral system (which maintains object properties), the dorsal 
system (which deals with spatial properties), the associative memory (which integrates all of 
these), an information lookup subsystem (which retrieves information about the most relevant 
object in visual attention), and attention shifting sub-systems (to direct the attention window). 
Based on his account of alternate processing of geometric and abstract representations, Kosslyn 
predicts that image operations which depend on geometry are faster than it would be expected 
if the processing takes place using purely abstract descriptions, which is supported by mental 
rotation experiments (Shepard and Metzler 1971). On the other hand, where Kosslyn argues 
that the imagination of larger images takes more time (Kosslyn 1975) because of the greater 
level of detail involved (Kosslyn 1994), propositionalists may answer that ‘larger’ images are 
simply more prominent and associated with more tacit knowledge (Pylyshyn 2002, p. 163). 
Further arguments in the debate between pictorialists and propositionalists are given in Tye’s 
“The imagery debate”, which itself tries to identify a middle ground (Tye 1991). 
108 Scientific discussion tends to take place in the form of a (symbolic) language, and since 
Wittgenstein (1921), thinking is generally quite often equated with linguistic productivity. As 
Bertrand Russel (1919) has put it: “The habit of abstract pursuits makes learned men much 
inferior to the average in the power of visualization, and much more exclusively occupied with 
words in their ‘thinking’,” and thus, they tend to downplay or even neglect the role of non-
lingual, visually or spatially oriented aspects of thought processes. 
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embodiment of a rule-based system. The perceptual system in Psi agent 
implementations rely on a fixed number of levels consisting of clear-cut visual 
situation concepts that are resolved into clear-cut visual object concepts which in turn 
consist out of clear-cut Gestalts (Koffka 1935), which are made up of line-segments. 
On each level, the individual features are organized as por-linked chains, with the first 
element sub-connected to the parent. This is not necessarily a restriction of the theory; 
I believe that these simplifications mainly serve the purpose of illustrating an 
otherwise too untidy set of algorithms to the reader.  

 
To encode links in scripts, Dörner uses por/ret-links, which he describes as causal 
relations. This way, events are ordered and at the same time, the links reflect, in 
which way they cause one another. This is consistent with other proposals in 
Cognitive Science (for instance Cheng and Novick 1992), where it is suggested that 
the strength of a causal inference reflects the probability of an event leading to an 
outcome. Indeed, this is what the links semantically reflect (because there strength is 
adjusted to model probablities of transitions from one event to another). Yet, there 
might be cases in which causal relations differ from the probability of transitions. For 
instance, when storing a melody or poem, a sequence of elements might predict the 
successor extremely well (because the melody and the poem are the same each time). 
Yet one would not argue that the elements of a melody or poem would cause each 
other - they just happen to be ordered in that sequence, they are neighbors on the 
time-line within a thread of a protocol. It seems desirable to have representations for 
cause-effect relations different from those for neighborhood relations, even though 
these often correlate, and the Dörner model currently makes no provision for that. As 
it is, the por/ret-linkage in protocols just marks a successor/predecessor relationship, 
and not a causal one. Por/ret would attain the semantics of a causal link only in 
contexts where it is used to retrieve causal relationships, for instance during planning, 
where the system may strive to attain a goal situation by marking preceding situations 
as sub-goals. 

A more realistic representation, one that could, at least conceptually, be extended 
to noisy environments with continuous feature-spaces, will ask for several 
enhancements: 

1. The departure from the node chains in favor of arbitrarily  por-linked graphs: 
Currently, both the memory protocols and the object descriptions tend to be too linear, 
which, by the way, seems to be a classical problem with scripts, as already noted by 
Schank and Abelson (1977). If the por-relation is used to connect adjacent features, 
then a single chain will represent an ordered list, instead of an arbitrarily ordered set. 
Such an ordered list is adequate for simple plans, but makes it difficult to test 
perceptual hypotheses in the order of availability of features (instead of the order 
specified in the list). Also, to facilitate parallel processing, an unordered set of sub-
hierarchies is more adequate than an ordered list. 

2. The introduction of different link weights to mark favored test and/or activation 
orders for individual features: Between a fully interconnected set and an ordered list 
of features, there may exist a continuum, for instance, a preferred order of features or 
plan elements that can be overridden by circumstance. This may be represented by 
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using weights of less than 1.0 as parameters of the por-links: the most preferred order 
would be represented by high link weights, and common alternatives by lower link 
weights. In a similar fashion, different weighted sub-links might indicate the 
significance of features in object recognition and so on, i.e. a feature which is strongly 
sub-linked to an object would be highly significant in recognition or interaction with 
this object, while a feature with a weak sub-link is less relevant and less likely to be 
used for recognition and action. 

3. The introduction of almost arbitrarily many levels of hierarchy: Dörner’s 
current implementations utilize fixed compositional hierarchies for object 
representation. For instance, in protocol memory there are six levels. The protocol 
marks the highest level, followed by the situational level. Situations consist of objects 
which consist of shapes (Gestalts), made up of line segments and, on the lowest level, 
pixel arrangements. Beyond the implementation, Dörner maintains that objects are 
defined as compositions of other objects, with arbitrarily many levels of hierarchy. 
Implementing this requires dealing with many sub-problems: The revision of 
hierarchies needs to preserve the semantics of related objects, beyond the revision 
itself. Also, it is likely that hierarchies can become recursive, and the algorithms 
working on the representations will have to be able to deal with that. Getting dynamic 
compositional hierarchies to work on real-world perceptual content will pose a 
formidable technical challenge. 

4. The use of flexible hierarchies: Depending on the context, objects might be 
composed of a certain set of sub-objects at one time, and of children of these sub-
objects at another. For instance, a human body may be recognizable by a silhouette 
including a head, a rump, extremities and so on, with the head being recognizable by 
the shape of the skull and the facial features. In a different context, if for instance only 
an extreme close-up of the face is available, the nose may suffice to recognize a 
human, but the overall composition of the human silhouette bears no relevance. 
Therefore, hierarchies will often have to be generated ad hoc depending on context 
and can probably not be guaranteed to be consistent with other hierarchies. 

5. Working with hierarchies of mixed depth: If objects may be composed of other 
objects, the distance between any given object representation and the associated 
sensor/actuator level is unlikely to be be uniform. If hierarchies are constructed 
depending on context, sub-links may cross several levels of hierarchy at once. 

6. Methods for expressing and working with relations between features within an 
object. Dörner describes the use of alternatives and subjunctions, the latter as a make-
shift replacement of conjunctions (Dörner et al. 2002, p. 65-66). On top of that, 
mutual exclusions, cardinalities and feature spaces depending on multiple attributes 
will have to be included, for instance, to represent colors depending on multiple 
receptors.  

7. Context dependent relationships between features: If a set of features 
{ }1 2,N n n=  compositionally defines an object p by 1 2( , ( , ))sub p por n n  (i.e. both 

features together make up the object), there may be another object q that is distinct 
from p but defined by the same N using 1 2( , ); ( , )sub p n sub p n  (i.e. one of the features 
is sufficient for the object). Obviously then, the por-link between 1n  and 2n  needs to 
be treated as relative to p, as it only applies in the context of 1 2( , ( , ))sub p por n n , not 
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on the context of q. In other words, we need a way to express that n1 is por-related to 
n2 with respect to p. 

8. The inclusion of different neural learning mechanisms. While binary linked 
representations may be treated as discrete rules, real-valued links require neural 
learning. Needless to say, all algorithmical paradigms used on a single representation 
need to be mutually compatible.  

9. Complex schematic representations are not acquired in a single step, but over 
many perceptual cycles; we almost never learn new schemas, rather, we modify 
existing ones (Rumelhart and Norman 1981). Thus, representations have to be stable 
during knowledge retraction and modification; the algorithms processing them need 
to possess any-time characteristics (Dean and Boddy 1988; Zilberstein and Russell 
1992). 

 
Deriving more detailed models of the theory by extending the means of Psi agents to 
cope with more realistic environments and to extend their problem solving capability 
involves generalizing the representations, from more or less binary linked trees into 
multi-layer associative networks of neural elements. This amounts to removing a lot 
of the current “neatness” of the model and replacing it with “scruffiness”, the clean 
and simplistic nested chains of nodes may eventually have give way to partially 
ordered, heavily interlinked quagmires, and the dynamics of these representations will 
not be held in check by centrally executed procedures for retrieval, execution and re-
organisation, but by global and local constraints on the exchange of activation 
between the representational units. 

It is clear that the short list of challenges that I have just given calls for a quite 
formidable research program. The current set of representational mechanisms, as 
implemented in the models, might be seen as scaffolding to support the other parts of 
the theory.  

Dörner’s theory has in many ways been constructed top-down to explain how 
symbolic cognitive processes may be expressed with neural elements. Thus, one is 
tempted to hard-wire some aspects directly into the agent, instead of implementing a 
mechanism that brings them forth on its own. This sometimes results in artifacts in the 
theory. For example, Dörner’s object recognition relies on an explicitly defined level 
of Gestalts: these are directly implemented within the accommodation procedure (p. 
213). There is no doubt that Gestalts play an important role in visual perception, but 
does this mean that we have to implement them? Rather, one would expect them to 
emerge automatically when a multi-layer network is trained over visual input 
according to a sparseness and stability doctrine (König and Küger 2006). In other 
words, Gestalts are just an emergent by-product of low-entropy encoding of lower 
level visual features at higher levels in the perceptual hierarchy. They do not need any 
extra treatment beyond a mechanism that seeks to minimize entropy when storing 
information in a feed-forward network. 

This accusation of too much “neatness” with respect to representations is not a 
fundamental disagreement with Dörner’s theory, it applies only to the given 
implementations. In many respects, Dörner has already added a lot of “scruffiness”, 
for instance by using the emotional pathways as modulators of cognition. (Note that 
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LeDoux, 1996, has termed them as “quick and dirty” shortcuts to describe their 
influence on cognitive processes—and Dörner’s theory captures that role well.)  

The representations suggested by Dörner are really quite simple, elegant and 
uniform. They do have some shortcomings, however, but with one exception these 
may be remedied easily: 

- There is no proper mechanism to express the passage of time. Like in ACT-R 
(Anderson 1983, p. 49), temporal strings represent orders, not intervals, and 
the distance between events has to be expressed with additional attributes. 
Dörner suggests using the weights of links between successive elements in an 
episodic protocol to mark the temporal distance between these elements, but 
this conflicts with the relevance of the string, which is indicated by the same 
weights. This may be tackled using additional annotations, however. In the 
current models, there is no need to deal with proper representation of time, 
because the environments are characterized by discrete events. 
A more thorough approach to representing time will not only have to deal 
with ordering elements in a protocol relatively to each other, but also with the 
connection of events to durations, such as ‘internal clocks’ that are either 
linked to short-term or circadianic oscillators. Also, the absolute distances of 
events to key events may have to be stored. Clearly, proper representation of 
time is a very interesting and worthwile research topic on its own, and will 
require quite some effort to implement. 

- Elements in strings are currently only connected to their predecessor (using 
por/ret-links); only the first one is connected to the parent (sub/sur). If it is 
necessary to backtrack to the parent element during processing (for instance 
to find out that “March” not only is the successor to “February”, but that both 
are members of the list “Month”), the list has to be traced to the first element, 
before the parent can be identified. A straightforward solution might consist 
in adopting the strategy of ACT-R (Anderson 1983, p. 53) to connect all 
elements, albeit weakly, to the parent. 

- As mentioned above, there is no mechanism for typologies that would allow a 
straightforward realization of conceptual relationships as for instance 
suggested in Ross Quillian’s classical paradigm (Quillian 1968), which is 
built upon the relations has (partonomic), can (instrumental) and is-a. The Psi 
representations do not know ‘is-a’-links. Here, borrowing ideas from ACT-R 
might pose more serious challenges, because while types in ACT-R may be 
expressed, they need to be manually coded. This conflicts with the Psi 
theory’s attitude of completely autonomous learning. If ‘is-a’-links were 
introduced, Psi agents would need to be equipped with category learning and 
mechanisms for representing feature inheritance. 
 

In representational paradigms (Sowa 1999), “is-a”-links play either syntactical or 
semantical roles. For instance, in ACT-R models, the number of attribute slots per 
concept is limited to a small number (five to seven, typically). For the retrieval of a 
concept, all of these might be used—ACT-R places a strong limitation on storage, but 
no limitation on retrieval (Rutledge-Taylor 2005). So, in order to add more features to 
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a concept, these have to be inherited from other concepts, and “is-a” delivers this 
inheritance. In Psi, there is unlimited storage - the number of links between concepts 
(and between concepts and their respective features) is unbounded. On the other hand, 
the retrieval is limited to the (perhaps five to seven) features with the strongest 
activation and linkage. The activation of these features will depend on the current 
context and is determined by activation spreading from neighboring elements, and the 
width and depth of activation will depend on the settings of the cognitive modulators 
activation (width) and resolution level (depth). Because of its unlimited 
storage/limited retrieval paradigm, concepts in Psi can have an arbitrary number of 
relevant features. Yet there is another syntactical role for “is-a”-links: if they are used 
for inheritance, they allow the centralized storage of features that are shared between 
many individuals. So, instead of storing all features that allow recognition and 
interaction with every dog along with the conceptual description of that very dog, a 
type concept for ‘dog’ could hold all commonalities or default properties, and the 
individual concepts will only need to encode the differences from the prototype 
defined by the type. 

Semantically, “is-a”-linked type concepts allow reasoning about generalities and 
abstractions that are helpful for planning and anticipation. Dörner suggests answering 
this requirement by reducing the resolution of individual representations, until they 
become prototypical; different individuals now match the same prototype, because the 
constraints that distinguish individuals are relaxed: The neglect of details is, in a 
nutshell, Dörner’s approach to abstraction in general (see Dörner 1999, p. 126, 135, 
183, 222, 571). It is questionable if the omission of details is a satisfactory solution in 
all circumstances, rather, these details should be replaced with contextually suitable 
generalizations (their super-categories). 109 

This brings us to another potential shortcoming: there is no strict conceptual 
difference between individuals and types in the Psi theory, and I do not think that 
Dörner acknowledges the need to make a distinction between individuals and classes 
of identical looking. This might be a shortcoming of the current state of the theory, 
because there is a big difference in the way humans treat instances of the same 
individual that looks differently, vs. different individuals which happen to have the 
same properties. It is conceivable to have two individuals which share all their 
properties - not physically perhaps, because in the case of material objects they might 

                                                 
109 In fact, there is much more than one sense to the notion of abstraction: we may refer to 
1. categorial knowledge, which is abstracted from experience 
2. the behavioral ability to generalize over instances 
3. abstraction as a summary representation (which increases the likelihood of re-construction of 
this representation in the future) 
4. abstraction as schematic representation, which increases sparseness (as for instance geons for 
the abstraction of threedimensional geometrical representations, Biedermann 1987) or 
exaggerates critical properties (Posner, Keele 1968; Rhodes, Brennan, Carey 1987; Barsalou 
1985, Palmeri and Nosofsky 2001) 
5. abstraction as flexible representation (so the same description can be applied to a variety of 
tasks) (Winograd 1975) 
6. abstraction as abstract concepts (detached from physical entities, metaphysical) (Barsalou 
1999; Paivio 1986; Wiemer-Hastings, Krug, Xu 2001) 
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have difficulty in occupying the same place in space and time - but in our 
imagination. These individuals might remain distinct, as long as they are different in 
their identities. In the same way we can imagine objects which are extremely different 
in every respect, but which are conceived as being one and the same, because they 
share their identity. The crucial difference between different occurrences of the same 
individual and different instances of like objects is obviously not perceptual, but 
representational. What makes up this difference in representation is the property of 
identity. Identity can not be perceived - it is a feature imposed by the way objects are 
stored within the cognitive system: occurrences of the same object have to share a 
‘world line’, a thread in the protocol, in other words: they are different descriptions of 
an object within the same biography.  

For instance, it is (in the current implementations) impossible for an agent to 
represent the difference between meeting the same object twice under different 
circumstances and meeting two different objects with the same properties—the 
identity of objects hinges on distinctive features. Identity itself, however, is not a 
phenomenological or empirical property that might be directly observed by checking 
features and locations of objects. It is an “essence” of objects, a property that only 
applies to their representation. To say that two object instances share an identity does 
not necessarily imply that they have to share any features beyond that identity. (It is 
for instance possible to express that a certain enchanted frog is a prince. In this case, 
we are expressing the belief that the frog and the prince somehow share a biography, 
that there is some operation—perhaps performed by an evil witch—which has applied 
an identity-preserving transformation to one or the other.) Technically, by declaring 
the identity between two object instances, we are expressing that in our 
representation, there is a common protocol thread for these objects. Conversely, if two 
objects share all of their properties except the continuity of their protocol threads, they 
remain two distinct individuals (as in: “the evil witch has replaced the prince with an 
identical copy of himself, which shares even his memories”). If we accept that 
identity is not a property of how things present themselves to a system, but a property 
of how the system may represent these things, we will need to equip Psi agents with a 
way to associate identical object instances (for instances in perception) with their 
individual protocol threads (“biographies”), and to keep similar looking objects that 
are distinct on separate protocol threads. Semantically, this again amounts to an “is-a” 
link; the standard link types (por, ret, sub, sur) are semantically incompatible to mark 
“identical, but stored in a different position in the network.” 

Currently, Dörner takes two different approaches with respect to individual 
identity. In the Island simulation, all objects except the agent are immobile and can 
thus be distinguished by their location in the environment. Learning, on the other 
hand, applies to all instances of objects sharing the same properties, and the challenge 
consists in narrowing down the set of distinctive properties to those that separate the 
objects into similarity classes with respect to their interaction. For instance, rocks may 
look slightly different but react similarly to attempts to hit them (they fall apart) or to 
ingest them (they resist), and the agent will have to find those properties that separate 
rocks from piles of sand or trees. All objects are relevant only as members of types, 
and instances of these types are not associated with “biographies”, but with locations 
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that make them distinct. In the “mice” simulation, which does not feature immobile 
objects but only mobile agents, each agent is recognized as different, the interaction 
with each one is recorded, and no inferences are made from the experiences of the 
interaction with one agent with respect to others. Thus, in the Island simulation, all 
objects are not individuals, but indefinite types; in the “mice” simulation, all objects 
are individuals. A simulation that combines mobile and immobile objects with 
consistent interaction histories will require equipping the Psi agents with a way to 
represent both aspects, and to switch between them whenever the need arises. 
 
The omission of a typology might also make it difficult to assign semantic roles to 
represented entities, and to properly address the frame problem (see below). 

Semantic roles are usually discussed in the context of natural language 
understanding—they were introduced in the context of generative grammars in the 
1960es –, but they are crucial when representing situations with agents, actions, 
instruments and effected changes. Typical examples of role designations are (Dowty 
1989): 

- Agents: they are part of situational descriptions, and they are the cause of an 
action that is described in the current situational frame. In a stronger sense, 
agents may be intentional, that is, they are interpreted in terms of “internal”, 
volitional states, which relate to the action. (For example, someone throwing 
a ball.) 

- Patients: are objects of actions, in the sense that something happens to them, 
and that they are affected by this. (For example, someone the ball is thrown 
to.) 

- Experiencers: are participants who are objects or observers of actions, but not 
affected (changed) by them. (For example, someone witnessing others playing 
ball.) 

- Themes: are participants that undergo a change in state or position as part of 
the action, or which have a state or position instrumental for the action. (For 
example, a ball being thrown.)  

- Locations: are thematic roles associated with an action that is related to a 
place.  

- Sources: are objects from which motions or transitions proceed. 
- Goals: are objects where motions or transactions commence. 
These role descriptions are neither universally agreed on in linguistics, nor are 

they exhaustive. For instance, Filmore (1968) distinguished just five basic roles: 
agentive, instrumental, dative (being in motion as effect of the action), locative and 
objective; Jackendoff (1972) uses just cause, change and be, while Frawley (1992) 
suggested four basic classes of roles with three sub-cases each: logical actors (agent, 
author, and instrument), logical recipients (patient, experiencer, and benefactive), 
spatial role (theme, source, and goal), non-participant roles (locative, reason, and 
purpose). Some work in Artificial Intelligence suggests much greater detail in the 
specification of roles, for instance, Sowa suggested 19 thematic roles (Sowa 1999). 
The Upper Cyc ontology (1997) of Lenat’s encyclopedic knowledge system uses 
more than a hundred thematic roles. Some approaches, such as FrameNet II, even 
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define roles relative to each situational frame, so their number ranges in the 600s (as 
of August 2006). 

 Does the Psi theory with its partonomic hierarchies and subjunctive sequences 
have the necessary expressive power to convey these roles?—The answer really 
depends on the view being taken. First of all, since there is no inheritance relation (in 
ACT-R provided by “is-a”-links), roles can not simply be defined per se—only 
individual situational frames can be expressed. A role could then be seen as a 
disjunction of all situational frames of the same type, with possible abstractions by 
omitting those features that are not distinctive for all instances of the roles. Thus, the 
role would be a generic frame that accommodates all its instances. But without a way 
of inheriting the properties of the generic frame to describe a new, specific situation, 
such an approach is of limited use. 

The lack of feature inheritance from one representational structure to the next also 
makes it difficult to deal with partial changes in situational frames; this is, for the 
most part, the infamous frame problem: how should the effects of actions be 
represented in such a way that it can be inferred what has changed and what remains 
after a sequence of actions has taken place (McCarthy and Hayes 1969; Pylyshyn 
1987; Shanahan 1997)? 

Dörner circumvents this problem by using complete situation descriptions (Dörner 
1999, p. 205), interleaved by actions. This brings three serious difficulties: first, in a 
complex, open world, complete situational descriptions are usually not feasible, and 
complete hierarchical descriptions are not possible, because what would be the proper 
root element of an all-encompassing situational frame? (In Dörner’s simulations, it is 
usually a location defined by the visual range of the agent.) Second, this 
representation does not specify which particular change of the situation was effected 
by the action, and which other changes where the result of other actions and events 
(dependency analysis). Therefore, it is also not possible to express that several agents 
effect several independent actions at the same time. And third, if there are multiple 
changes, it may be impossible to infer which part of the previous situation turned into 
which part of the new situation.110 

It seems inevitable that Psi agents will have to be able to represent partial 
situations as parts of situation-action-situation triplets before the frame problem can 
be addressed in any way; the remainder of the situation (the part that is not affected 
by the particular action) will have to be inherited from a more general frame, and the 
partial situation will have to be linked to its exact position within the more general 
situation description. 

 
Next to the question if the expressive power of the Psi theory’s representations 
suffices theoretically, it is (perhaps much more) important to know whether the Psi 

                                                 
110 In AI, several methods have been successively developed to deal with the frame problem, 
especially the Situation Calculus (McCarty1963), STRIPS (Fikes and Nilsson 1971) and the 
Fluent Calculus (Thielscher 1999) along with FLUX (Thielscher 2004). Discussion of the 
application of solutions of the frame problem to real-world situations, for instance robotic 
agents, can be for instance be found in Reiter (1991, 2001), and Shanahan and Witkowski 
(2000). 
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agents are equipped with sufficient means for acquiring these representations 
autonomously: remember that the Psi theory is not primarily concerned with 
specifying an expressive language (like ACT-R and Soar), but it defines an agent that 
explores and learns on its own. Because of the limited abilities of current 
implementations, their grossly simplified simulation worlds, the simplistic learning 
methods and inadequacies in the implementations, any attempt to answer this question 
would be extremely speculative.  

But even though we have seen some possible limits and many issues where the 
answers of the Psi theory to the questions of representation and knowledge 
management are fragmentary, there is a lot to be said in favor of its approach: It is a 
homogenous neurosymbolic formalism, which has been successfully applied to the 
representation of objects, episodic knowledge and plans, and which has been shown 
to be suitable for autonomous reinforcement learning and modeling the agent’s 
simulation environment. The Psi theory seems to be successful in addressing the 
problem of symbol grounding, and to represent objects with respect to their 
affordances. With its “unlimited storage, limited retrieval” approach, it provides a fast 
and cognitively plausible method for building an associative memory. Last but not 
least, the Psi theory is a work in progress. Because its representational apparatus is 
surprisingly simple and clear, it may serve as a good starting point for incremental 
extensions in the future. 

2.4 Artificial Emotion and the Psi theory 

Between 1960 and 1980, the Japanese psychologist Masanao Toda designed one of 
the first artificial life scenarios—the fungus eaters (Toda 1982). In an attempt to get 
outside the laboratory paradigm of behaviorist psychology, Toda wanted to look at 
individuals in a complete, dynamic environment, with a multitude of tasks that were 
to be tackled at once, with ever changing demands, with situatedness and persistent 
environmental and social interaction. In order to simplify the domain, he invented a 
game of robotic miners, which roam the distant planet Taros, searching for uranium 
and living of fungi. If the human subject controlling the robot is replaced by a 
computer program (something which Toda suggested but did not carry out), we are 
facing a challenge for a sophisticated agent control architecture. 

Toda suggests that the fungus eater agents will have to be emotional in order to 
survive, because the environment, which includes changing obstacles and competing 
agents, would be too complex for a straightforward algorithmical solution. Toda does 
not really distinguish between emotions, motivators and behavior programs—he 
subsumes these under the term urges and distinguishes biological urges (like hunger), 
emergency urges (startling, fear and anxiety), social urges (facilitating cooperation, 
social coordination and social status) and cognitive urges (especially curiosity, and 
acquired urges). Todas concepts have inspired a number of researchers to extensions 
and further development (Wehrle 1994; Pfeifer 1996; Aubé 1998). 

Dörner’s model of the Psi theory, especially in its Island implementation, has quite 
some semblance to Toda’s ideas: here, the task (given to human subjects and 
computer agents) consists in controlling a robot in search for ‘nucleotides’, food 
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sources and water. And Dörner even proposes similar urges to solve the Island game, 
like in Toda’s blueprint, there are ‘biological’ urges, cognitive urges and social urges. 
By designing an agent archictecture that can be directly compared to human 
performance in the Island simulation and that can even be fitted to the problem 
solving strategies of different personality types of human subjects (Dörner et al. 2002, 
Detje 2000, Dörner 2003), Dörner has become one of the the first researchers to 
create a validated computer model of human emotion during complex problem 
solving. 

 
The growing number of models of emotion is arguably one of the most interesting 
developments in AI and Cognitive Science within the last two decades; Dörner’s Psi 
theory is the child of a time of a multitude of approaches to understand the nature, 
role, expression and incidence of emotion. Partly, this is due to the growing demand 
for solid research in the design and control of believable agents (Reilly 1996) for 
character animation or behavior simulation in computer games and movies, and for 
animated avatars and/or dialogue systems (André and Rist 2001) that provide a 
human-like, affective interface to technical devices (Cassell et al. 2000). Even 
electronic toys like Sony’s Aibo robot (see Park, Sharlin, Kitamura and Lau 2005) 
and its humanoid successors are the subject of research for affective computing 
(Picard 1997). Next to the creation of believable emotional expression, capturing the 
role of emotion in decision making may increase the accuracy of models of human 
social behavior (Malsch et al. 2000; Moldt and von Scheve 2000; von Scheve 2000; 
Castelfranchi 1998; Schmidt 2000). Emotional states, which range from momentary 
reactions and affects, over undirected and persistent moods towards emotional 
dispositions, also influence perception, planning, task execution and memory (Boff 
and Lincoln 1988; Pew and Mavor 1998, chap. 9; Erk, Kiefer et al. 2003) and are 
therefore incorporated in models of task performance (Belavkin, Ritter and Elliman 
1999; Oatley and Jenkins 1996; Franceschini, McBride and Sheldon, 2001; Gratch 
and Marsella, 2001; Jones, 1998). Many individual differences in behavior are due to 
variances in emotional range, intensity and coping strategies (Ritter et al. 2002, p. 13), 
especially when comparing the behavior of adults and children (Belavkin et al., 1999). 
On the side of neurobiology, affective neuroscience (Damasio 1994; Davidson and 
Sutton 1995; Panksepp 1998; Rolls 1999; Lane and Nadel 2000) has started to lend a 
physiological foundation to understanding emotion.  
 
Reflecting the growing recognition of the importance of emotion for understanding 
human behavior (Scherer 1980), a vast number of emotional architectures for 
different applications, and based on very different methodologies has been proposed 
during the last two decades. I will not give a complete overview here, but I will refer 
to what I consider to be major developments, so we may put the Psi theory’s emotion 
model into the context of current work. (For more detailed reviews, see Hudlicka and 
Fellous 1996; Picard 1997; Ruebenstrunk 1998; Ritter et al. 2002; Gratch and 
Marsella 2005.)  
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In addition to aiding psychological research, putting emotion into agent architectures 
may also have technical benefits: adopting emotional modes of information 
processing could possibly improve the performance of robots and software agents. 
Whenever environments get more complex and more open, it becomes harder to 
define rules that are applicable and efficient in all interaction contexts that might 
arise. Here, adaptive heuristics are asked for, which control how information is 
acquired, processed and stored and which methods are used for decision making and 
action. 

Not surprisingly, many authors have pointed out that emotional architectures are 
good candidates for such heuristics, as emotions are fulfilling similar roles in 
biological organisms (see, for instance, Sloman 1992, Pfeifer 1988.) Obviously, the 
majority of the immense number of decisions biological systems have to face in every 
given moment is not settled by rational reasoning but rather by more simple, reactive 
means, mainly because complex cognitive processes tend to be slow and require more 
mental resources. But the same is true for decisions that apply to the organisation of 
mental processes. The way humans focus their deliberation on individual aspects of 
objects, for instance during perception, memorizing or planning, is highly variable 
and demands control mechanisms just as much as the organisation of physical 
resources. Emotions may also allow for fast and efficient evaluation of objects, events 
or the potential outcomes of actions with regard to their impact on the well-being of 
the agent, and impairments in emotional control systems have grave impacts on our 
ability to reason, to react to environmental stimuli and to behave in a socially 
adequate way (Damasio 1995, 2003). Sometimes it is argued that Artificial 
Intelligence will necessarily have to incorporate artificial emotion, because emotions 
provide indispensable functionality to mental functioning (Toda 1982, Lisetti and 
Gmytrasiewicz 2002, Minsky 2006).  

2.4.1 Understanding emotion 

Not the least important aspect of the allude of artificial emotion is its claim to allow a 
better understanding, maybe even a functionalist model of this most ‘mysterious’ trait 
of being human: of feeling, of experiencing the world and one’s own actions within it, 
of being moved by what is happening. Understanding emotion is not just a 
psychological enterprise, it is also a profound philosophical endeavor (Griffith 1997; 
Goldie 2000; Ben-Ze’ev 2000; Nussbaum 2001; Roberts 2003; Stephan and Walter 
2003, 2004). Thus, building an emotional agent means aiming for rough waters; the 
notion that a technical system is emotional sounds ambitious, if not somewhat 
spectacular; it even has the ring of blasphemy to many skeptics.  

Psi agents, according to Dörner (1994), do not just display emotions. The Psi 
theory boldly claims to deliver a functionalist explanation of what emotions, affects 
and feelings are, and if we buy into that claim, then Psi agents really have emotions. 
The approach of the Psi theory towards emotions is quite straightforward: Emotions 
are explained as configurations of cognition, settings of the cognitive modulators 
(resolution level, arousal, selection threshold, rate of securing behavior), along with 
motivational parameters (the pleasure/distress dimension supplied by the 
motivational system, and the current levels of the urges for competence and 
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uncertainty reduction). Dörner argues that the behavior of any cognitive system that is 
modulated in this (or a similar way) will lend itself to an emotional interpretation by 
an external observer—the system may appear joyful, sad, angry, distressed, hesitant 
or surprised and so on. If the system is able to perceive the effects of the modulation 
and reflect on them, it may itself arrive at emotional categories to describe its own 
states. Precisely because emotional categories are descriptions that refer to such 
modulatory settings, emotions do not just coincide with them, but are functionally 
realized as modulatory states. According to Dörner, Psi agents, by virtue of the 
modulation of their cognition, do not just simulate emotion, but are genuinely 
emotional. 

Because the Psi theory claims to explain what it means to have an emotion (not 
just to express or simulate it), it is probably best known as a theory of human 
emotion, even though it deals at least as much with motivation, action control, 
representation and perception. 

Naturally, the evaluation of this assertion depends on how we define emotions, 
which is a hotly contested topic. Within psychology, there seems to be no sign of an 
agreement on a consensual definition so far. 

 
Emotions are states of organisms which influence the allocation of physical and 
mental resources, perception, recognition, deliberation, learning and action. However, 
this is by no means a proper definition: the same is true for a lot of other physiological 
states that we would not intuitively call emotions. A raising or lowering of the blood 
pressure, for instance, does affect organisms in a similar way, but would not be called 
an emotion in itself. 

Emotions are adaptive (i.e. the emotional states an organism is subjected to in a 
certain situation depend partly on its history of past experiences in similar situations), 
and the range of emotional states may vary between individuals (Russel 1994, 1995), 
but there is evidence that emotions themselves are not the product of learning and 
largely invariant in dimensionality and expression (Ekman and Friesen 1971; Izard 
1994). For instance, individuals may learn in what situations fear is appropriate or 
inappropriate, as well what kind of fear and what intensity. But the ability to perceive 
fear itself is not acquired, rather, it stems from the way an organism is equipped to 
react to certain external or internal stimuli.  

 
While people do have an intuitive notion of emotion, the term is difficult to pin down 
in a technical context. We can give examples of emotional states (and would probably 
arrive at a list much similar to Charles Darwin, who suggested attention/interest and 
rejection, joy and distress/sadness, surprise, fear, rage/anger, and shame as the set of 
primary emotions (Darwin 1872), and we distinguish between emotions and their 
physiological correlates, like blood pressure, noradrenaline levels or excitatory states 
of certain areas of the amygdala (for introduction into the neurobiology of emotion, 
see Roth 2000, and LeDoux 1996). We could extend our definition by requesting that 
these states have to be consciously experienced by the individual, conscious 
experience being a difficult notion in itself. The reason for this extension is obvious: 
while states like blood pressure and noradrenaline levels can usually not be 
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consciously experienced, anger and happiness may. Emotions are not just 
physiological events or processes, but certain aspects of certain physiological events 
or processes that are experienced in a certain way.  

Unfortunately, it is possible that anger or happiness are present and influence the 
organism without the individual being conscious about their presence. While the 
common usage of the term ‘emotion’ refers to “what is felt” by an individual, it seems 
to be acceptable to ‘feel’ without being conscious about the ‘feeling’ at the same time. 
Then, in what sense are states that are not consciously perceived but are only 
perceivable aspects of physiological states real? The notion of ‘potentially perceivable 
aspects’ is not satisfying either, because of the difficulty to make clear what 
distinguishes something that is not perceivable from something that is potentially 
perceivable without prior knowledge of the mechanism of perception of emotions, 
and a model of this mechanism asks for a concept of emotions—which we wanted to 
establish in the first place. 

The reason for this awkward situation is obvious: the term ‘emotion’ refers to 
something that is established by introspection and attribution to others; many 
psychologists who examined the topic did not even try to find a functional 
description, but classified common emotional terms into clusters to reach a taxonomy 
(Traxel 1960; Hampel 1977; Schmidt-Atzert and Ströhme 1983).  

Emotions are not physically observable in an organism, not necessarily because of 
an explanatory gap between mental and physiological processes, but because they are 
mental states and as such belong to a different category altogether (Frijda 1986). 

Here arises a difficulty to define and ascribe artificial emotions. We may design a 
system that is capable of displaying internal states that have functions akin to 
emotions in biological organisms and that can be perceived as similar enough to 
human emotions to support attributions by external observers. But as long as the 
relationship between emotions and their physiological correlates and the perceptual 
mechanisms is not backed by commonly accepted models, it can not be clearly 
established that the system indeed has emotions (instead of simulating emotions). 
 
Instead of tackling the difficult problem of a concise and all-encompassing definition 
of emotion, it may help to look at the classes of phenomena that are discussed in its 
context. The research in emotion models may well be subsumed within the framework 
of a component theory of emotion, according to which emotions have at least four 
aspects (Diener 1999; Erk and Walter 2000): 

- Subjective experience (how it feels to be in an emotional state) 
- Physiological processes (neural, neurochemical and physiological 

mechanisms that facilitate emotion) 
- Expressive behavior (facial and bodily expression, movement patterns, 

modulation of voice and breath etc.) 
- Cognitive evaluations. 
 

The term ‘emotion’, or, more generally, ‘emotional processes’, is often—but not 
always—used to subsume the whole field of affective phenomena (Panksepp 1998): 
emotional reflexes (especially startling), basal emotions (like fear, anger, joy, sadness 
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and disgust), probably more complex and culturally shaped emotions (like shame, 
pride, envy and jealousy), and undirected moods (like euphoria or depression). On the 
other hand, many feelings are not emotions—for instance, hunger, pain, itching. They 
certainly possess the four above mentioned aspects and modulate cognitive behavior, 
but are not usually considered emotional. Rather, these feelings are part of the 
phenomenology of the motivational system, and even though emotion and motivation 
are closely linked, emotion and motivation are usually recognized as different 
formations. In the Psi theory, the difference between emotion and motivation is very 
pronounced: “Motivation determines what has to be done, emotion determines how it 
has to be done.” (Hille 1998)  

2.4.2 Emotion in cognitive processing and behavior 

The emotions of biological organisms have two aspects that affect cognitive 
processing: they configure the mental systems of individuals, and the effect of the 
differences in configuration can usually (at least potentially) be experienced by the 
individual. The configurations influence dispositions for action and perception. In this 
sense, emotions act as mechanisms for the distribution and allocation of mental and 
physical resources of the organism. On the other hand, emotions can be aspects of 
percepts and concepts that color, direct and filter perception, imagination and 
learning. (This is the primary perspective the Psi theory takes towards emotion.) 
Emotions may be associated with perceptual and imaginative content, and whenever 
this content is accessed, the associations are retrieved and add a dimension of 
subjective relevance. 

In both cases, emotions can perform adaptation: both the range of configurations 
that applies to certain environmental situations and the emotions associated with 
certain stimuli can change over time and represent an aspect of learning of the 
organism. 

These effects can be modeled in artificial systems: artificial emotions may be 
certain configurations of information processing systems that act as contextual and 
structural filters to sense data from the environment and to data derived from these 
sense data that represent the external environment, memories of previous events, 
anticipated future events and imaginations of absent, abstract or fictive objects. Here, 
contextual filtering implies that emotions may set a context that is used to decide 
about priorities of objects to be extracted from sense data, retrieved from memory and 
so on. It may also include the choice of properties of these objects, both propositional 
and nonpropositional, that are brought to the attention of the system. On the other 
hand, structural filtering refers to the way information is made available to the system 
(i.e. shallow vs. deep hierarchies, exhaustive or short feature sets etc.), based on 
emotional parameter settings. Thus, decisions can be made when it comes to 
balancing between completeness (which increases the computational cost of 
deliberating processes) and brevity (which may affect versatility). 

Emotions may also be seen as allocators of processing resources to individual 
problems, on the short term by regulating the focus of attention according to the 
current emotional setting (for instance, by concentrating on a single object with most 
resources, to watch out for specific events, to encompass as much of the environment 
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as possible, or to spend some time reorganizing internal representations of past 
events). Over time, they may be helpful in deciding which information is worth 
keeping and what kind of representation is to be chosen for it. 

The primary role associated with emotions consists in their evaluative function. 
Emotions attach a valence to objects, events and the outcomes of actions by 
associating them with values, according to their impact on the different aspects of the 
relationship between agent and environment. Emotions may also order the priorities 
of the individual behaviors and actions of an artificial agent. Imagine for instance a 
robot that runs out of battery power and might consider slow, but economic 
movements first, puts less energy in communication and information processing and, 
instead of spending much time with deliberation and exploration, shows preference 
for behaviors that could lead to a replenishing of the batteries. 
 
A major difference between the perception of emotions and the perception of most 
other mental content consists in the fact that emotions are for the most part 
transparent to the individual: they can not be identified as distinct entities but rather 
are integral, embedded parts of the reality as it presents itself to the individual. In 
contrast, for instance ideas can be identified as being mere imagination, in that sense 
they are opaque to the inner perception. Emotions, like sadness, are much more acute: 
it is not as if the idea of sadness is present, instead, the mental scenery itself is tinted 
by it. The frame of emotion rests underneath cognition and is thereby an integral part 
of the inner reality of the agent; emotions color and filter perception, imagination and 
anticipation. 

 
When emotional filtering reduces the complexity of available data according to the 
situation and the needs of the system, then the cognitive resources of the agent may be 
put to better use—at the price of reducing the space of reachable solutions (Pfeifer 
1988). When cognitive resources are limited and the environment is complex and 
dynamic, emotions may improve reaction times. This also implies that emotional 
filtering is useless, even detrimental to success, if the cognitive resources are 
sufficient for a complete processing, for instance in a limited microworld domain, 
such as a game of chess, or if the algorithms do not benefit from modulation. In real-
world contexts or more complex environments, however, the available sensor 
information may exceed the processing capabilities, and a multitude of different 
representations could be used for internal representation of external objects and 
events. 

Emotions may come into play at different levels of perception. They may 
configure the early levels of perception to look for specifical patterns first, if these are 
somehow correlated to the current task or motivation of the agent (motivational 
priming). Thus, objects that are relevant to the agent can be identified faster than 
others. Second, objects may be given emotional tags that specify which of their 
properties are relevant and should be given consideration, which objects are desirable 
or threatening and therefore deserve attention, and towards which objects the agent 
remains indifferent and that might therefore require less detail in their representation 
or can be cancelled out altogether. 



 
 

 
 
 

 197 

This does not only apply to the perception of external objects, but also to the 
perception of internal representations. Here, emotions can direct which aspects of 
these representations should be given more detail, which extensions of the 
representations should be retrieved or generated or where the resolution of the 
representation can be reduced. 

If agents have to coordinate several behaviors at a time, these behaviors may 
independently consult the current emotional state parameters of the system, thus 
enabling decentral control. Behaviors may also examine the emotional tags of 
individual objects for decision making. While this may be not as powerful as the use 
of a reasoning mechanism, it is usually much faster. Real world objects tend to have 
thousands of properties and many possible ways of classification. While most of these 
are irrelevant for a given task, it makes deliberative processes very difficult. If all data 
about all available objects of the current context are combined in—probably 
computationally expensive—mental simulation, it is unlikely that the agent is able to 
find solutions to real-world planning problems of this kind within an acceptable 
timespan. If emotional evaluations of sub-problems can act as fast heuristics of which 
objects, properties and representations are relevant or promising in the given context, 
they might reduce the amount of necessary computation to a minimum. 

 
Emotions can also be used to decide which kind of decision making and action is 
appropriate in the given situation; factors like ‘curiosity’, ‘boredom’, ‘frustration’ or 
‘fear’ might interfere with the current deliberation of the agent and lead to 
modification or interruption of the active behavior. 

 
A particularly complex domain that greatly benefits from emotional control is social 
interaction (Cacioppo et al. 2002, Adolphs 2003). The perception and expression of 
social signals relies on fast and intuitive processes, which are for the most part not 
deliberate. Social emotions do not just improve the communication of intentional 
states between agents, but also enforce social norms and thus coordinate group 
behavior (Frank 1992; Cacioppo et al. 2002; Greene and Haidt 2002; Moll et al. 
2005). 

2.4.3 Approaches to modeling emotion 

Architectures that represent implementations of artificial emotions can be classified in 
several ways, for instance by looking at the way emotions are embedded within the 
cognitive system. Their main families can be characterized as follows: 

- Emotions act, in conjuction with the motivational system, as main control 
structures of the agent. Action control and behavior execution depend on the 
states of the emotional component, and deliberative processes are only 
consulted when the need arises. (This is the approach taken in the Psi theory.) 

- Emotions are parts or descriptors of individual sub-agents that compete within 
the architecture for the control of behaviors and actions. This is the 
organizational principle of Cathéxis by Velásquez (1997) and in Cañamero’s 
Abbotts (1997). Thus, the emotional agent itself is implemented as a multi-
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agent system, which makes it easy to model the co-occurrence of multiple 
emotions.  

- Emotions are a module within the cognitive architecture that offers results to 
other, coexisting modules. Control is either distributed among these 
components or subordinated to a central execution or deliberation component 
(an approach that has been taken, for instance, in the PECS agents: Schmidt 
2000). 

- Emotions act only as an interface for communication with human users and as 
a guise for behavior strategies that bear no similarity to emotional processing. 
They might either model emotional states of the communication partner and 
help to respond accordingly, or they might just aid in creating believable 
communication (for instance, in an electronic shopping system). 

 
A second possible way of classifying emotional architectures expands to the method 
of modelling. Common approaches consist in: 

 
- Modelling emotions as explicit states. Thus, the emotional agent has a number 

of states it can adopt, possibly with varying intensity, and a set of state 
transition functions. These states parameterise the modules of behavior, 
perception, deliberation and so on. 

- Modelling emotions by connecting them directly to stimuli, assessments or 
urges (like hunger or social needs) of the agent. (A similar approach has been 
suggested by Frijda, 1986.) 

- Modelling emotional compounds as results of the co-occurrence of basic 
emotions. Suggestions for suitable sets of primary emotions and/or emotion 
determinants have been made by some emotion psychologists (for instance 
Plutchik, 1980). 

- Modelling emotions implicitly by identifying the parameters that modify the 
agent’s behavior and are thus the correlates of the emotions. The 
manipulation of these parameters will modify the emotional setting of the 
agent. This way, the emotions are not part of the implementation but rather an 
emergent phenomenon.  

 
Emotions in Dörner’s Psi agents are implemented in the latter way: Instead of 
realizing them as distinct entities, the agents are modulated by parameters that are not 
emotions themselves. Emotions become an emergent phenomenon: they appear on a 
different descriptional level, as the particular way cognitive processing is carried out. 
For example, anger is, according to the Psi theory, initiated by the failure to attain a 
goal in the face of an obstacle and is characterized by a low resolution level, which 
leads to a limited problem solving capacity and neglect for details. Also, the failure 
increases the sense of urgency, which in turn amplifies the activation level, leading to 
more impulsive action, and a narrower examination of the environment. ‘Anger’ is the 
label that we use for this particular, typical configuration, as we observe it in 
humans—and Dörner argues, that if we agree, this set of conditions were indeed what 
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we mean by ‘anger’, it is then perfectly reasonable to apply the same label to the same 
configuration in an artificial agent (Dörner 1999, p. 561).  

 
The latter two methods—mixing primary emotions, or manipulating modulatory 
states—lead to fundamentally different models of emotions than the first two. Rather 
than explicit events, emotions are understood as areas in a multi-dimensional space. 
This space is defined by the individual parameters that make up the emotional setting 
of the agent (for example, introvertedness, arousal, focus, time-frame and so on). 
Some of these parameters will be global to the system, while others can also be 
limited to individual emotional sub-systems. Such a modelling offers a number of 
advantages. Apart from the fact that it is quite closely mimicking the way emotions 
are attributed to biological systems, it is also very well suited to model co-occurring 
emotions, because individual emotional areas might overlap.111  

2.4.3.1 Emotion as a continuous multidimensional sp ace 

 

 
 
Figure 2.10: Dimensions of Wundt’s emotional space (see Wundt 1910) 

One of the first attempts to treat emotion as a continuous space was made by Wilhelm 
Wundt (1910). According to Wundt, every emotional state is characterized by three 
components that can be organized into orthogonal dimensions. The first dimension 
ranges from pleasure to displeasure, the second from arousal to calmness, and the last 
one from tension to relaxion (figure 2.10), that is, every emotional state can be 
evaluated with respect to its positive or negative content, its stressfulness, and the 
strength it exhibits. Thus, an emotion may be pleasurable, intense and calm at the 

                                                 
111 Note that there are emotions that sometimes occur in union, such as anger and amusement, 
while others are mutually exclusive, like panic and boredom. This can easily be envisioned, 
when emotions are located inside a suitable parameter space. While the areas of anger and 
amusement may have areas where they overlap, panic and boredom may be located on opposite 
ends of an arousal-dimension. 
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same time, but not pleasurable and displeasurable at once. Wundt’s model has been 
re-invented by Charles Osgood in 1957, with an evaluation dimension (for 
pleasure/displeasure), arousal, and potency (for the strength of the emotion) (Osgood 
et al. 1957), and re-discovered by Ertel (1965) as valence, arousal, and potency. 

Wundt’s model does not capture the social aspects of emotion, so it has been 
sometimes amended to include extraversion/introversion, apprehension/disgust and so 
on, for instance by Traxel and Heide, who added submission/dominance as the third 
dimension to a valence/arousal model (Traxel and Heide 1961). 
 
Note that arousal, valence and introversion are themselves not emotions, but mental 
configuration parameters that are much closer to the physiological level than actual 
emotions—we could call them proto-emotions. Emotions are areas within the space 
spanned by the proto-emotional dimensions. 

 

 
 

Figure 2.11: Dimensions of emotion according to the Psi theory (adopted from Hille 1998) 

The emotion model of the Psi theory spans at least a six-dimensional 
continuousspace: Katrin Hille (1998) describes it with the following proto-emotional 
dimensions: arousal (which corresponds to the physiological unspecific sympaticus 
syndrome and subsumes Wundt’s tension and arousal dimensions), resolution level, 
dominance of the leading motive (usually called selection threshold), the level of 
background checks (the rate of the securing behavior), and the level of goal-directed 
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behavior.112 (The sixth dimension is the valence, i.e. the signals supplied by the 
pleasure/displeasure system.) Anger, for instance, is characterized by high arousal, 
low resolution, strong motive dominance, few background checks and strong goal-
orientedness; sadness by low arousal, high resolution, strong dominance, few 
background-checks and low goal-orientedness. The dimensions are not completely 
orthogonal to each other (resolution is mainly inversely related to arousal, and goal 
orientedness is partially dependent on arousal as well). 
This way, the emotional dimensions are not just classified, but also explained as result 
of particular demands of the individual. The states of the modulators (the proto-
emotional parameters) are a function of the urgency and importance of motives, and 
of the ability to cope with the environment and the tasks that have to be fulfilled to 
satisfy the motives. As we can see in figure 2.11 (compare with figure 1.19, which 
highlights the behavioral consequences) a high urgency of the leading motive will 
decrease resolution and increase goal orientation and selection threshold (motive 
dominance), while less time is spent checking for changes in the background; whereas 
a high importance of the leading motive will increase the resolution level. Uncertainty 
and lack of experience (task specific competence) increase the rate of securing 
behavior. A high level of confidence (general competence) increases the selection 
threshold, and the arousal is proportional to the general demand situation (urgency 
and importance of all motives). Uncertainty is measured by comparing expectations 
with events as they happen, competence depends on the rate of success while 
attempting to execute goal-directed behavior; the demands for uncertainty reduction 
and acquisition of competence are urges and parts of the motivational system (both 
can be motives on their own). At all times, some motives are active, and one is 
selected to be the dominant motive, depending on its strength (importance), the time 
left to satisfy it (urgency), the current selection threshold and the expected chance to 
satisfy it (task specific competence). Thus, motive importances and urgencies are 
supplied by the motivational system. 

The six-dimensional model is not exhaustive; especially when looking at social 
emotions, at least the demands for affiliation (external legitimacy signals) and ‘honor’ 
(internal legitimacy, ethical conformance), which are motivational dimensions like 
competence and uncertainty reduction, would need to be added. 

Note that in the Psi theory, there is always only a single dominant motive. This 
prevents conflicts, but makes it difficult to model the parallel pursuit of non-
conflicting goals. (In the Island implementation, when confronted with a new 
situation, agents first ‘play a round of opportunism’ to see if the available options 
allow the satisfaction of other active motives besides the dominant one. Then they go 
back to the currently active plan. This way, the Psi agents can make use of readily 
available food source while searching for water, but they are not going to plan in such 
a way as to deliberately include the food source in their route to a a well. Then again, 
perhaps this is adequate for agents without reflective reasoning capabilities, and 
language is an enabler for the parallel pursuit of goals.) 

                                                 
112 In later descriptions of the theory, goal-orientedness is replaced by motive selection and 
planning behaviors that refer directly to the competence and certainty urges. 
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Instead of structuring emotion spaces using proto-emotional dimensions, they can also 
be described directly, using primitive emotions. Plutchik (1994) constructs his 
emotion space from such emotional clusters. He suggests eight primary emotions: 
acceptance, anger, expectation, disgust, joy, fear, sadness und surprise. The emotions 
vary in their intensity: strong anger becomes rage, while weak anger is mere 
annoyance; sadness ranges from pensiveness to grief and so on (see figure 2.12). At 
the point of lowest intensity, emotions are no longer expressed and become 
indistinguishable. In Plutchiks model, the individual’s emotional state does not 
correspond to a single point in the emotion space, but as a behavioral vector. 
Emotions can appear in conjunctions and form primary dyads (combinations of 
neighboring emotions, for instance, love would be a combination of acceptance and 
joy), secondary dyads (from emotions that are one field apart, such as pride, which is 
seen as a combination of anger and joy), and tertiary dyads (emotions that are more 
than one field apart, like shame, which is interpreted as fear and disgust). Even co 
occurrences of opposing emotions are not impossible, but will cause a deadlock in the 
behavior. 

 
 
Figure 2.12: Emotional dimensions according to Plutchik (1980) 

A model like this is very difficult to validate, and it does not do much to clarify the 
relationship between behavior and emotional construct. Among the researchers 
constructing their models from primary emotions, there is little agreement on their 
nature, their number, and which of them are indeed primary (Ortony and Turner 
1990). Ekman suggests anger, disgust, fear, joy, sadness and surprise (1992); Izard 
(1994) comes up with anger, loathing, disgust, distress, fear, guilt, interest, joy, shame 
and surprise, Oatley and Johnson-Laird use anger, disgust, arousal, joy and sadness 
(Oatley and Johnson-Laird 1987).  
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2.4.3.2 Emotions as aspects of cognitive processing  
Approaches like the one by Plutchik attempt to order our notions of different 
emotions (Pfeifer 1994), but they usually have little to say about how they are realized 
in the individual, and thus, what the nature of an emotional event really is, in which 
way it is experienced and which function is served by it within the cognitive system. 

 There are several AI architectures that propose to solve this problem by designing 
a more general model of cognitive processing, and then show which aspects of the 
behavior of the system are emotional. Emotion is seen either as an emergent aspect of 
cognition, or at least as a set of functionalities that can only be properly understood 
when embedded into a cognitive system. 

In Sloman’s architectural sketch of human cognition, H-CogAff (Sloman 1992), 
emotion is seen as a consequence of the way processing takes place on the different 
layers (Sloman 1981): startling, for instance, corresponds to an activation of the alarm 
system, and motive conflicts, evaluations, appraisals give rise to primary, secondary 
and tertiary emotions (Damasio 1994). Here, primary emotions are seen as reactive 
alarm reactions, secondary emotions involve both the reactive and the deliberative 
layer,113 and tertiary emotions correspond to disruptions of the meta-management due 
to activity on the other layers, leading to loss of attention (Sloman 2001; Sloman, 
Chrisley and Scheutz 2005) . 

Sloman does not explicitly put emotion into his architecture—in his view, they are 
a necessary, and often disruptive, by-product of cognitive processing.  

Dörner does not emphasize the annoyance of being disrupted by emotional 
episodes—he considers them indispensable and beneficial aspects of cognition 
(Dörner and Starker 2004)—but like Sloman, he sees them as integral to the 
architecture, not as a separate layer or module. Just as colors and shapes are 
inseparable from objects, emotions are the form of psychological processes; if action, 
planning, perception and memory are taken away, nothing remains to be studied 
(Dörner 1999, p. 565). From an internal perspective, an emotion is conceptualized as 
                                                 
113 As an example, Sloman describes an author attempting to write a paper: this author is 
receiving an urgent phone call, in which issues are raised that can not be resolved. A 
representation of these issues remains active, but because they can not be dealt with by means 
of the reactive layer, they are passed through the attention filter into the deliberative layer. The 
deliberative layer has to divert resources to the problem raised in the call, thus has to pause the 
task of writing the paper, which previously took up all deliberative resources. Because there is 
no way to tackle the phone call problem, it is rejected and sent back outside the domain of 
deliberation. But because the sense of urgency remains and the issue is not settled, it remains 
insistent, and the reactive layer soon sends it back above the attention threshold. As a result, the 
problem is constantly swapped in and out of the deliberative layer, which greatly impedes 
progress on the paper. This process of rumination may be interpreted as an emotional 
episode.—It is interesting to note that the Dörner model would describe the episode in a much 
different fashion: the phone call modulates the attention of the subject by increasing its arousal, 
lowering its resolution level and raising the rate of background checks, and this new 
modulation will be unsuitable to attend to the task of writing the paper, which would require a 
high resolution level and a strong selection threshold. Thus, two very different (but not 
necessarily incompatible) processing models of cognition may offer alternative explanations of 
the same phenomenon: Eventually, in both scenarios, we are looking at authors that are easily 
distracted when writing a paper. 
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a conjunction of the specifics of these forms of processes, for instance, a ‘depressed 
mood’ would be a concept featuring low arousal, low general competence, a low 
selection threshold, little or no goal-directedness and negative valence. The negative 
valence, low arousal and the lack of appetitive orientation color perception, or rather, 
remove a lot of its color, which in itself becomes a part of the internal 
phenomenology of depression.114 If emotion is seen as an additional component or 
module that communicates with an otherwise ‘rational’ cognitive processor, as for 
instance in the emotional extensions to ACT-R (Belavkin et al. 1999), and Soar 
(Chong 1999, Gratch 1999) it becomes more difficult to capture the internal 
phenomenology of emotion, and it is probably harder to adequately depict the 
cognitive effects of emotional modulation. 

On the other hand, as long as Dörner’s Psi agents are not yet an accurate model of 
human cognition (and they are far from it), they will not have human emotions, but 
Psi emotions. Just like human emotions, Psi emotions will be modulations of 
perception, action selection, planning and so on, but because cognition, modulation 
and motivation are different from the original, the resulting emotional categories may 
be quite different. This argument could be extended to animal cognition: while most 
vertebrates and all mammals certainly have emotions, in the sense that their cognition 
is modulated by valence, arousal, resolution level and so on, their emotions might be 
phenomenologically and categorically dissimilar to human emotions, because they 
have a different motivational system, different cognitive capabilities and organization, 
and perhaps even different modulators. Likewise, Psi agents are animals of a kind 
different from humans. 

2.4.3.3 Emotions as appraisals 
Human emotions are an adaptation to a very specific environment (Cosmides and 
Tooby 2001), and their functional role is sometimes impossible to explain outside an 
evolutionary context, for instance in the case of jealousy (Buss, Larsen, Western and 
Semmelroth 1992; Buss, Larsen and Western 1996, Dijkstra and Buunk 2001), 
sanctioning behavior (Boyd et al. 2003) and grief (Archer 2001). Many emotions are 
not solutions to the engineering challenges posed by problem solving, but to the 
troubles of populations of genomes in the wild (Dawkins 1976), and they are simply 
not going to appear as by-products of the processes in cognitive architectures that do 
not explicitly model these troubles. 

If models are required to behave specifically like emotional humans, not to 
explain how, in principle, emotion works in humans, they tend to take a different 
perspective than the cognitive processing approaches. They treat emotions as pre-
defined categories and explain what events trigger them, and how they change 

                                                 
114 Being in an emotional state is not the same as experiencing it (even though one might argue 
that a definition of emotion should include its phenomenal aspects). The latter requires the 
availability of sense data regarding the modulator influences, and the integration of these sense 
data into a phenomenal self model (McCarthy 1979), not just an extensional representation of 
the agent within itself, but an intensional self representation: a model of itself as a 
representation thing. Metzinger calls this representation a phenomenal model of the 
intentionality relation (PMIR) (Metzinger 2000, see Metzinger 2003 for a discussion). 
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behavior and expression. Models like this are used in social simulation with multi-
agent systems (Schmidt 2000, 2002) and for the creation of believable behavior in 
animated characters for computer games and movies (Norman, Ortony and Russell 
2003, Norman 2004). 

Roseman (1991, Roseman et al. 1996) has coined the term appraisal to describe 
the relationship between stimulus and emotion; an appraisal is a valenced reaction to a 
situation, as it is perceived by the agent.  

 
 
Figure 2.13: The role of appraisals in the cognitive system (Gratch and Marsella 2004, 
p. 11) 

In this view, emotions are triggered by a causal interpretation of the environment 
(Smith and Lazarus 1990; Gratch and Marsella 2004) with respect to the current 
goals, beliefs, intentions and relations of the agent. By evaluating these, a frame of the 
appraisal and a corresponding affective state of the agent are set, which in turn enable 
it to cope with the situation. Here, coping subsumes the external and the cognitive 
behaviors with relation to the appraisal: actions and speech acts, as well as the 
modification of beliefs, intentions, goals and plans. This way, the agent influences the 
external environment (the world accessible by action and communication) and the 
internal environment (its model of the world, along with its plans and goals) to 
address the issues according to their valence and context. Appraisal frame and 
affective state are the link between external and internal situational stimuli, and the 
internal and external response (see figure 2.13). 

Perhaps the most prominent model of this category is based on work by Ortony, 
Clore and Collins (1988), because it is easily adapted for the simulation of believable 
behavior (Reilly 1996; Bates and Reilly 1992). The authors distinguish three main 
classes of emotions with respect to their object, which is either the consequence of 
some event, an aspect of some thing, or the action of some agent. In this regard, they 
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are different from the emotion space approaches, which are relatively indifferent to 
the object of an affect and focus on the nature of the affect itself. From this 
perspective, the difference between social emotions (the appraisal of the actions of 
oneself or other agents) and event-based emotions (hope, relief) becomes visible 
(figure 2.14).  

At the first stage, the OCC model distinguishes for each group of emotions 
whether they are positively or negatively valenced; for events this is their degree of 
pleasurableness, resentment etc., for agents it is approval or disapproval, and for 
objects it is their desirability, and thus the degree of attraction or repulsion. 

Event-related emotions are further separated depending on whether the 
consequences apply to others or oneself, and whether the event is already present or 
not. Present events may lead to joy or distress, anticipated events to hope and fear. If 
the anticipated events materialize, the reactions are either satisfaction or the 
confirmation of fear, if they do not occur, then the consequence is either 
disappointment or relief. 

Emotions with respect to events happening to others depend on the stance taken 
towards these others—if they are seen positively, reactions may be happiness for 
them, or pity (if the event has negative consequences). If the others are resented, then 
a positive outcome may lead to envy and resentment, a negative to gloating. 

Agent-oriented emotions (attributions) depend on whether the agent is someone 
else (who may be admired or reproached), or one self (in which case the emotion 
could be pride or shame). 

Of course, appraisals may also relate to the consequences of events that are caused 
by the actions of agents. The OCC taxonomy calls the resulting emotions 
‘attribution/well-being compounds’: Here, if oneself is responsible, the reaction may 
be gratification or remorse, and if the culprit is someone else, it could be gratitude or 
anger. 

Every emotion can be specified in a formal language, by using threshold 
parameters to specify intervals of real-valued variables in a weight-matrix to describe 

- for events: their desirability for the agent itself, their desirability for others, 
their deservingness, their liking, the likelihood of their occurence, the related 
effort, and whether they are realized, 

- for agents: their praiseworthiness, their cognitive relevance, the deviation of 
expectations, 

- for objects: their appeal and their familiarity. 
By setting the thresholds accordingly, the emotion model can be tuned to different 

applications, or to individual variances. 
The OCC model is not complete, in the sense that it specifies every possible 

emotion (jealousy, for instance, is missing, and many emotions are not discussed in 
detail), but the authors maintain that its extension is straightforward. 
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Figure 2.14: Taxonomy of emotions with respect to appraisal (Ortony, Clore and 
Collins 1988, p. 19) 

The OCC model is an engineering approach that constructs the emotion categories 
based on systematizing our commonsense understanding of emotion. It does not say 
much about how the cognitive appraisals are realized—this is left to the designer of 
an architecture for a believable agent. 

Another appraisal model, this time rooted in psychological methodology, has been 
suggested by Scherer (1984, 1988). He proposes that emotional states are the result of 
stimulus-evaluation-checks (SECs), which are the equivalent to appraisals and 
performed by the human cognitive system. 

According to Scherer, there are five major SECs, along with a number of sub-
checks: 

- novelty (similar to uncertainty in the Dörner model, with sub-checks for 
suddenness, familiarity and predictability) 

- intrinsic pleasantness 
- goal significance (with sub-checks for goal relevance, probability of result, 

expectation, supportive character, urgency) 
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- coping potential (similar to Dörner’s competence, with sub-checks for agent, 
motive, power and adaptability) 

- compatibility (asks for conformance to social norms and standards, with sub-
checks for externality and internality) 

Scherer maintains that every emotion is uniquely defined by a combination of 
checks and sub-checks, and attempted to validate this claim using a database 
generated from answers of human subjects to questions aligned to the different checks 
(Scherer 1993). For a model with 14 emotions, which were organized with weights in 
a space of 15 dimensions (corresponding to the checks and sub-checks), Scherer 
achieved a level of agreement between his subjects and the model of 77.9%. 

Scherer proposes a cognitive architecture with five different sub-systems to go 
with his emotion model, but his attempt at classifying emotions has a behaviorist 
core—emotions are only relevant as a link between external stimuli and externalizable 
responses. Frequently, however, the onset and degree of emotional episodes does not 
stand in a strong relationship to a triggering external situation, especially with respect 
to undirected, basic emotions, like angst and extasy, which may simply result from 
the neurochemical setup of the brain at the time, or a stimulation of brain areas (see, 
for instance, LeDoux 1992). This is also true if they are bound to a cognitive content 
and angst becomes fear, extasy becomes joy. Sometimes, we just have the ‘wrong’ 
emotion, and a model that binds all emotional states to appraisals of external stimuli 
instead of examining the nature of the emotional state itself is going to meet a 
boundary, beyond which it can not explain its object any more. 

2.4.3.4 What makes Dörner’s agents emotional? 
As we have seen, the Psi theory does not explain emotions as a link between stimulus 
and behavior, but as a modulation of cognition. This view has gained more ground in 
Cognitive Science in recent years, as other researchers focus on cognitive modulation, 
often also called behavior moderation (Hudlicka 1997) or moderation of cognition 
(see Pew and Mavor 1998; Jones, Henninger and Chown 2002; Gluck, Gunzelmann, 
Gratch, Hudlicka, Ritter 2006), and is also supported by findings in neuroscience 
(Erk, Kiefer et al. 2003). The view that the cognitive modulation through internal, 
subconscious measures of success and failure, represented in more detail as 
competence and uncertainty in the Dörner model, plays a role in problem solving, is 
for instance taken by Ritter and Belavkin (Belavkin 2001; Belavkin and Ritter 2000; 
Belavkin, Ritter and Elliman 1999), and can be found in at least two other 
independently developed models (Andreae 1998; Scherer 1993). 
 
Yet, emotions can not be explained with cognitive modulation alone—without 
incorporating a cognitive content, an object of the affect, it is impossible to discern 
emotions like jealousy and envy. Both are negatively valenced affects that may create 
a high arousal, increase the selection threshold, reduce the resolution level, frustrate 
the competence urge and so on—but their real difference lies in the object of the 
affect. In Psi agents, this content is supplied by the motivational system. Motivational 
relevance binds affects to objects, episodes and events.  

Dörner’s motivational system is based on a finite number of urges (or drives; see 
section 1.8.2): 
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1. Physiological urges (like energy and physical integrity) 
2. Cognitive urges (competence and uncertainty reduction) 
3. Social urges (affiliation). 
 

Similar categories of drives have been suggested by Tyrell (1993) and Sun (2003), 
and by Knoll (2005). In the Tyrell-Sun model, the physiological urges are called low 
level primary drives, the social urges high level primary drives—‘high level’, because 
they require a cognitive assessment of a social situation; without understanding a 
social situation, which includes representations of other agents and their mental states, 
the drive has no object, and emotions such as pride and envy are impossible (Miceli 
and Castelfranchi 2000). Knoll, who gives a neurobiological basis to the assumptions 
of his model, calls the physiological urges innate drives and distinguishes between 

- survival drives: homeostasis; avoidance of displeasure and danger; water and 
food 

- reproductive drives: copulation; nurturing of offspring 
(The Psi theory does contain homeostasis as an implicit principle and omits 

reproduction, because it is not part of the current agent worlds.) 
Sun and Knoll assume a third category of drives (called secondary drives by Sun), 

which are acquired, such as the drives of a collector, of a chess-player, a hunter, a 
mathematician. In the Psi theory, there is no such notion: every goal-directed action 
has to serve, directly or indirectly, a ‘hardwired’ drive. This is not necessarily a 
problem, because the Psi theory attempts to explain the behavior of the mathematician 
and the collector by their existing cognitive urges—because the urges may have 
arbitrary content as their object, as long as new strategies or refinements for handling 
this content can be learned (competence) and new avenues can be explored 
(uncertainty reduction). Even ‘procrastinating’ behavior can be explained this way, by 
avoidance of frustration of the competence urge in the face of cognitive difficulties.  

I believe that the omission of acquired drives is advantageous, because the 
mechanism of the acquisition of secondary drives remains relatively unclear in the 
other theories. What would be the motivation behind acquiring a motivation? What 
can not become a motivation (and thus a source of pleasure and displeasure signals)? 
Explaining acquired habits and cultural traits as conditioned ways of an already pre-
existing set of drives seems more elegant and sparse. 

But if Dörner tries to tell us the whole story using such a reduced set of drives, 
then his theory probably covers just the beginning. There are many white areas in all 
the three categories of urges. 

The extension of the physiological urge set, for instance with urges for rest and 
mating, seems straightforward; in both cases, there would be relatively well-defined 
sets of physiological parameters that can be translated into demand indicators. 

On the level of the cognitive drives, the model makes apparently no provision for 
aesthetics. For instance, in humans there are innate preferences for certain kinds of 
landscapes—the aesthetics of the natural environment (Thornhill 2003; Ruso, 
Renninger and Atzwanger 2003). Partly, this may be served by an acquired 
association of visible food sources and shelters with certain types of landscape, but it 
is not clear if this suffices. There is also currently no provision for aesthetical 
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preferences in other agents (which could translate to preferences in finding mates), 
and there is no explicit sense for abstract aesthetics, as it is for instance satisfied 
when pursuing mathematics. Dörner maintains that the urge for uncertainty reduction 
suffices for a motive to create better and more elegant representations, but it seems to 
me that elegance is not a matter of certainty, but a matter of efficient representational 
organization. In order to replace a convoluted representation with a sparser one, 
without omitting detail, and perhaps while unearthing previously hidden 
dependencies, Psi agents should receive a positive reinforcement signal—and this 
preference for elegant representations could be equivalent to a third cognitive urge, 
one for aesthetics. Eventually, only further experiments with more sophisticated 
learning strategies and better means of representation may show, if such a third urge 
is orthogonal to the competence and certainty urges, and therefore needed. 

In the area of modeling sociality, the notion of two urges for legitimacy (Dörner et 
al. 2001; Detje 2003, pp. 241) promises to have big explanatory power. Dörner 
differentiates between external legitimacy, which is also called affiliation urge; this 
urge is satisfied by signals of positive social acceptance by other agens (‘l-signal’) 
and frustrated by negative social signals (‘anti-l-signals’). The agents may also 
generate legitimacy signals for themselves, called ‘internal legitimacy’. These explain 
the satisfaction generated by the conformance to the agent’s own internalized ethical 
and social standards, and frustration and suffering, if the agent has to act against them. 
Yet it is not clear if a single affiliatory drive can subsume both nurturing behavior and 
conformance with peers—if it was a single drive, these should be mutually replacable 
sources of affiliation, just like soft-drinks might mutually replace each other with 
respect to the satisfaction of the drinking urge. The idea that caring for offspring and 
enjoying a high level of social acceptance are just alternatives serving the same 
appetitive goal seems not entirely plausible to me, even though Dörner discusses that 
the attainment of sources of affiliation is subject to conditioning (Dörner 1999, pp. 
341). Most interesting is the notion of supplicative signals, which are used by agents 
to get others to help them. Supplicative signals are, roughly speaking, a promise for 
(external and internal) legitimacy, and they express that an agent is unable to solve a 
problem it is facing on its own. If an agent sends a supplicative signal, then an urge to 
help is created by frustrating the affiliation urge of the receiver—a supplicative signal 
also is an anti-l-signal; it is unpleasant to perceive someone in distress (unless one 
wishes him ill). The ‘plea’ mechanism enabled by supplicative signals allows for 
altruistic group strategies that are beneficial for the population as a whole (Dörner and 
Gerdes 2005). It also explains the role of crying in humans. Crying is mainly an 
expression of perceived helplessness (Miceli und Castelfranchi 2003), and, in a social 
context, a strong supplicative signal (Dörner 1999, p. 333). That is also the reason 
why crying is only perceived as ‘sincere’ if it is involuntary. 

It is unlikely, however, that affiliation and supplication already tell the whole story 
of social interaction. Most social emotions, such as jealousy, triumph or blame, have 
(actual or anticipated) mental states of other agents as their objects (Castelfranchi 
1998). Psi agents currently have no theory of mind (Perner 1999), no model of the 
mental states of others. Therefore, they can not play consistent social roles, will have 
no sophisticated social groups, and can not capture the full range of social 
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emotionality; the Psi agents in the original Island situation distinguish agents and 
objects only by the fact that the former may emit affiliation signals. In the ‘mice’ 
simulation, every object is a moving agent (all other means of interaction with the 
environment are restricted to the influences of different types of terrain), but is only 
modeled with respect to its interaction history, not by attributing attitudes and other 
mental states to it. Could Psi agents learn to use a theory of mind to interpret other 
agents as agents?—In a way, this debate comes down to the question whether the 
ability to use ‘theory of mind’ explanations on others is due to our general ability for 
classification and our culture, or if it is due to an innate faculty (a ‘theory of mind 
module’ of our brain) we are born with, and it is reflected in the question of the nature 
of some forms of autism (Baron-Cohen 1995). Recent neurobiological research 
suggests that humans are indeed equipped with a ‘theory of mind module’, a network 
of areas in the brain that are consistently active during social interaction and social 
reasoning (Gallagher and Frith 2003). These findings suggest that Psi agents would 
have to be equipped with such a module too. For instance, an emotion like love, 
which Dörner interprets as a combination of affiliation, novelty and sexuality, in a 
combination matching a single object (Dörner 1999, p. 574-586), could not 
completely be modeled. Without a theory of mind, the Psi theory lacks an 
understanding of empathy and the matching of personalities (“Passung”). Also, after a 
loving relationship is established, it does not necessarily hinge on the properties of the 
object of love, but on its identity (see discussion of representational identity in section 
2.3.4.2). 

In spite of its current limitations, the way the Psi theory approaches emotion is 
fruitful and does much to clarify the subject. The combination of a modulator model 
to capture moods and affective processes with a motivational model to explain the 
range and object-directedness of emotions goes a very long way in explaining the 
nature of emotion in a computational model. The sophisticated and detailed answers 
to the question of the nature of emotion is certainly not the most important, but 
perhaps the most interesting and unique aspect of the Psi theory.  
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Appendix 2.I: Areas covered by Dörner’s Psi archite cture 

 
Areas of research in cognitive architectures, after: BICA, Biologically-Inspired 
Cognitive Architectures, Proposer Information Pamphlet (PIP) for Broad Agency 
Announcement 05-18, Defense Advanced Research Projects Agency, Information 
Processing Technology Office, Arlington, VA 2005 
 
Topics addressed in Psi theory are marked in grey. 
 
 

 
a. Episodic (events) 

i. Categorical 
1. Declarative 
(explicit) b. Semantic 

(facts) ii. Item 
i. Skill memory 

a. Procedural 
ii. Habit memory 

b. Priming 
i. Visual 
ii. Auditory 
iii. Tactile 
iv. Olfactory 

c. Perceptual 
memory 

v. Gustatory 

2. Non-
declarative 
(implicit) 

d. Emotional memory 
3. Spatial 
4. Short-term memory store 
5. Long-term memory store 
6. Intermediate-term memory store 
7. Working memory 

A. Types of 
memory: 

8. Relational memory 
1. Active recall / retrieval 

i. Object recognition 

ii. Pattern recognition 2. Passive recall / recognition 

iii. Recognition of 
multimodal stimuli 

3. Active maintenance (working memory) 
4. Storage 

I. Memory 

B. Memory 
processes: 

5. Consolidation 
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1. Classical 
conditioning 
(associative learning) 

a. Configural learning A. Stimulus-response 
learning 

2. Instrumental conditioning (operant conditioning) 
B. Non-associative learning (single-trial learning) 
C. Social learning 
D. Procedural learning 
E. Motor sequence learning 
F. Episodic learning 
G. Observational learning 

1.Visual learning 
2. Auditory learning 
3. Somatosensory learning 
4. Olfactory learning 

H. Perceptual learning 

5. Gustatory learning 
I. Relational learning 
J. Declarative learning 
K. Semantic learning 
L. Absolute learning 
M. Dimensional learning 
N. Serial learning 
O. Serial reversal learning 
P. Habituation 
Q. Sensitization 

1. Positive reinforcement R. Reinforcement 
learning 2. Negative reinforcement 
S.Aversion learning 
T. Imprinting 
U. Latent learning 

II. Learning 

V. Rule learning 
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A. Maintenance of task-relevant (context-relevant) information 

1. Social context 
B. Context interpretation 

2. Task context 

C. Attentional shift 

D. Working memory 

E. Action selection (decision making) 

F. Behavioral inhibition (action suppression) 

G. Performance monitoring 

H. Provisional planning 

I. Long-term planning 

J. Short-term planning 

K. Movement planning 

L. Goal formation 

M. Action initiation 

N. Action feedback monitoring 

a. Estimating value 

b. Estimating utility 
i. Estimating short-term 
consequences 

1. Estimating 
probability c. Estimating likely 

consequences of 
actions ii. Estimating long-term 

consequences 
i. Comparing short-term 
costs a. Comparing costs 

among possible 
actions ii. Comparing long-term 

costs 
i. Comparing short-term 
benefits 

b. Comparing 
benefits (e.g. value, 
utility) among 
possible actions 

ii. Comparing long-term 
benefits 
i. Comparing short-term 
cost/benefit relationships 

III Executive 
Processes 

O. Decision 
making 

2. Comparing 
multiple 
options 

c. Comparing 
cost/benefit 
relationships 
among possible 
actions 

ii. Comparing long-term 
cost/benefit relationships 
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a. Phonological knowledge 
b. Morphological knowledge 
c. Lexical knowledge 

i. Agent 
ii. Object 
iii. Location 
iv. Source 
v. Goal 

d. Semantic 
knowledge 

i. Application of 
case frames 

a. 
Identifi-
cation of: 

vi. Beneficiary 
e. Syntactic knowledge 
f. Grammatical knowledge 
g. Pragmatic knowledge (contextual knowledge) 

A. Language 
comprehension 

h. Discourse knowledge 
1. Phoneme generation 
2. Word generation 

a. Application of syntax 
b. Application of grammar 3. Phrase generation 

c. Application of semantics 
a. Statements 
b. Imperatives 4. Sentence generation 

c. Questions 
a. Conversational structure 
b. Narrative structure 

IV. Language / 
Symbolic 
Communication 

B. Language 
production 

5. Generation of higher-
order structuring 

c. Expository structure 
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1. Fear 
2. Surprise 
3. Humor 
4. Happiness 
5. Excitation 
6. Agitation 
7. Affection 
8. Sadness 
9. Anxiety 
10. Frustration 
11. Grief 
12. Regret 
13. Anticipation 
14. Embarrassment 
15. Shame 

A. Emotional recognition 

16. Humiliation 
1. Fear 
2. Surprise 
3. Humor 
4. Happiness 
5. Excitation 
6. Agitation 
7. Affection 
8. Sadness 
9. Anxiety 
10. Frustration 
11. Grief 
12. Regret 
13. Anticipation 
14. Embarrassment 
15. Shame 

B. Emotional expression 

16. Humiliation 
C. Startle 

1. Emotional mimicry 

2. Emotional suppression 

3. Misdirection of others’ attention(s) 
D. Deception 

4. Confabulation 
E. Recognition of deception 
F. Relationship formation 

1. Sympathy 
G. Emotional bonding 

2. Empathy 

V. Social / 
Emotional 

H. Identification of others' intentions 
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A. Awareness of time 
1. Self criticism 

B. Awareness of self 
2. Self approval 

C. Awareness of others' perspectives 
D. Spatial awareness 
E. Situational awareness (context awareness) 

1. Visual aesthetics 
2. Tactile aesthetics 
3. Auditory aesthetics 
4. Olfactory aesthetics 
5. Gustatory aesthetics 

F. Appreciation of aesthetics 

6. Polysensory aesthetics 
G. Long-term planning 
H. Short-term planning 
I. Movement planning 

VI. Consciousness 

J. Goal formation 

 
 

A. Syntactic knowledge 

B. Semantic knowledge 

C. Pragmatic knowledge 
VII. Knowledge representation 

D. World knowledge 
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1. Causal 
2. Statistical 
3. Structural 
4. Metaphoric 
5. Intersection 
6. Example- or case-based 
7. Symbolic play 
8. Symbolic mnemonics 
9. Distributed 

i. Categorical 
ii. Hypothetical 10. Logical a. Syllogistic 

iii. Disjunctive 
i. Inference 
ii. Mapping 

a. Procedural 
rules 

iii. Application 
a. Set-subset 
b. Set-superset 
c. Static 
properties 

11. Inferential 
rules 

b. Declarative 
rules 

i. Semantic 
rules 

d. Functional 
properties 

12. Abductive reasoning 
13. Deductive reasoning 

a. Analogical reasoning 
b. Category-based induction 

i. Temporal stimulus patterns 

A. Reasoning 
types: 
 

14. Inductive 
reasoning c. 

Generalization 
from: ii. Spatial stimulus patterns 

B. Parsing 

C. Semantic translation 
D. Disambiguation 

1. Counting 
E. Symbolic reasoning 

2. Mathematical reasoning 
1. Negation 
2. Conjunction 
3. Disjunction 

VIII. Logic / 
Reasoning 

F. Simple logical operations 

4. Implication 
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1. Position 
2. Color a. Chromatic contrast 

a. Direction 
b. Velocity 3. Motion 
c. Acceleration 

4. Depth (stereopsis) 
a. Absolute luminance 
b. Spatial luminance contrast 

5. Intensity 
(luminance) 

c. Temporal luminance contrast 
6. Spatial frequency 
7. Temporal frequency 
8. Edge detection 

IX. 
Elementary 
Vision 

A. Detection 
and 
processing of 
visual stimulus 
parameters: 

9. Edge orientation 

 
 

a. Contours 
b. Surfaces 
c. Textures 

d. 3-dimensional form 
A. Feature extraction; 
Extrapolation of... 

e. Form-from-motion 

B. Figure-ground separation 
C. Object detection 
D. Object recognition 
E. Pattern recognition (same thing) 

X. Higher Vision— 
Object Perception 

F. Perceptual binding of visual stimulus features 

 
 

1. Object size 
2. Inter-object distances 
3. Inter-object spatial relationships 
4. Distance of object from observer 

a. Eye-centered coordinates 
b. Head-centered coordinates 
c. Body-centered coordinates 

XI. Higher Vision— 
Spatial Perception 

5. Object location within 
multiple coordinate 
frames 

d. World-centered coordinates 
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1. Sweetness 
2. Saltiness 
3. Sourness 
4. Bitterness 

5. Taste intensity 

XIV. Gustation 
A. Detection and 
processing of taste 
parameters: 

6. Taste duration 

 
 

 
 

1. Stimulus position 
2. Stimulus duration 
3. Stimulus amplitude/intensity 

a. Direction 
b. Velocity 

A. Detection and 
processing of tactile 
stimulus 
parameters 4. Stimulus motion 

c. Acceleration 
a. Cold 

1. Thermosensation 
b. Heat 

a. thermonociception 

b. chemonociception 2. Nociception 

c. mechanonociception 
a. Low-threshold 
b. High-threshold 
c. Flutter sense 

d. Vibratory sense 

XII. Somato-
sensation 

B. Detection and 
discrimination via 
multiple 
submodalities 

3. Mechanosensation 

e. Visceral sense 

1. Odor intensity A. Detection and processing of olfactory 
stimulus parameters 2. Odor duration XIII. Olfaction 
B. Odor discrimination (type or source of odor) 

1. Intensity (loudness/volume) 

2. Frequency (timbre) a. Frequency decomposition 
(Fourier analysis) 

3. Duration 
4. Source location 

a. Direction 
b. Velocity 5. Source movement 
c. Acceleration 
a. Direction 
b. Rate 6. Change in frequency 
c. Acceleration 
a. Direction 
b. Rate 

XV. Audition 

A. Detection and 
processing of 
auditory stimulus 
parameters: 

7. Change in intensity 
c. Acceleration 
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1. Static limb position 

2. Static head position 
3. Static trunk position 
4. Joint angle 
5. Movement (kinesthesia) 
a. Direction 
b. Velocity 

XVI. Proprioception A. Awareness of: 

c. Acceleration 

 
A. Pitch sensation 
B. Yaw sensation 
C. Roll sensation 
D. Postural reflex responses 

XVII. Vestibular function 

E. Balance reflexes 

 
1. Spatial co-localization 
2. Temporal coincidence 

a. Velocity 
b. Direction 3. Common dynamics: 
c. Acceleration 

XVIII. 
Polysensory 
integration 

A. Perceptual binding 
of multimodal 
(polysensory) stimulus 
features based on: 

4. Previous experience (memory) 

 
A. Navigation 
B. Spatial mapping 
C. Spatial memory 
D. Object detection 
E. Object avoidance 
F. Object rotation 
G. Visually guided movement 

1. Eye-centered coordinates 
2. Head-centered coordinates 
3. Body-centered coordinates 

XIX. Spatial cognition 

H. Coordinate 
transformations 

4. World-centered coordinates 

 
A. Preattentive mechanisms (perceptual salience) 
B. Arousal (global changes in alertness) 
C. Voluntary attention (active) 
D. Involuntary attention (passive) 

1. Posture/body orientation E. Orientation behavior 
2. Orientation of sensory organs 

F. Stimulus localization 
G. Stimulus selection 
H. Stimulus tracking (smooth pursuit) 
I. Attention shift 
J. Suppression of irrelevant stimuli 

18. Attentional mechanisms 

K. Flexible allocation of processing resources 
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A. Combinational creativity 
B. Auditory creativity 
C. Visual creativity 
D. Gustatory creativity 
E. Olfactory creativity 
F. Tactile creativity 
G. Motor creativity 
H. Spatial creativity 
I. Analytical creativity 
J. Mathematical creativity 
K. Exploratory creativity 
L. Transformational creativity 

1. Metaphor 

18I. Creativity 

M. Linguistic creativity 
2. Narrative 

 
A. Reward optimization 

B. Avoidance of aversive stimuli 

C. Appetitive motivation 

D. Homeostatic motivation 

E. Reproductive motivation 

F. Altruistic motivation 

18II. Motivation 

G. Hedonic motivation 
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3 The MicroPsi Architecture 
 

“We will give birth by machine. We will build a thousand steam-
powered mothers. From them will pour forth a river of life. Nothing but 
life! Nothing but Robots!” 

Damon, leader of the robots, from Karel Čapek’s play “R.U.R.”, 1920 
 
When the Psi theory sketched its map of a mind using a computational theory, it left 
the methodological vincinity of experimental psychology, but gained a novel and 
more comprehensive perspective on cognitionIt pictured it as a perceptual symbol 
system, embedded into a motivational apparatus and modulated by emotional states, 
as a situated, problem solving agent in pursuit of the satisfaction of physiological and 
cognitive urges, acting over and making sense of a heterogenous, dynamic 
environment, and—in most recent work—as a part of a larger set of socially 
interacting agents. Dörner’s attempt to analytically explain the principles of human 
problem solving and action regulation has indeed lead to a ‘blueprint for a mind’, a 
broad model, a unified architecture of cognition. As of recently, this domain of 
research has become much more populated, and Dörner’s research finds itself in close 
neighborhood to other developments in the cognitive modeling community, and to 
architectures and methods developed in Artificial Intelligence.  

The goal of this work is to highlight these compatibilities, and to make Dörner’s 
theory accessible to other researchers, by clearly identifying his contributions, and by 
translating his suggestions for computer models into a re-usable framework for a 
cognitive architecture. 

In my view, the Psi theory’s unique contribution to Cognitive Scienceis the way it 
combines grounded neurosymbolic representations with a polythematic motivational 
system. It is offering a conceptual explanation for both the multitude of goals a mind 
sets, pursues and abandons during its cogitation and action, and the perhaps equally 
important serendipity of the wandering thoughts and associations. By including an 
understanding of modulated cognition that treats affective states as particular 
configurations of perceptual processes, action regulation, planning and memory 
access, the Psi theory offers a non-trivial integration of emotion into its architecture, 
which is consistent not only with external observables, but also with the 
phenomenology of feeling and emotion.  

Cognitive architectures that are open to implementation as computer models often 
restrict themselves to the question of the functioning of cognitive processes and how 
human behavior can be simulated within a technical framework. Rarely do they 
address the question of how these processes and behaviors give rise to cognitive 
autonomy, personhood and phenomenal experience, in short: of how they bring a 
mind into being. Dörner’s philosophy never gets shy when confronted with matters of 
this kind, and yet remains always true to its functionalist and constructionist stance. 
Of course, the Psi theory is very far from offering comprehensive answers to all of the 
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problems of the philosophy, functionality and physiology of cognition. But as a 
framework for thinking about the mind, it offers tools to ask these questions, in ways 
that make it possible to answer them in a fruitful way, open to critical discussion, 
experimental validation and further exploration. 

These aspects may explain why we—the author and a group of enthusiastic 
students of AI and Cognitive Science that chose to join this enterprise—decided to 
choose the Psi theory as a starting point for our attempts at building models of 
cognition. The result of these attempts is the MicroPsi project (see the MicroPsi 
homepage; Bach Bach 2003, 2005, 2006, 2007; Bach and Vuine 2003, 2004; Bach, 
Bauer and Vuine 2006; Bach, Dörner and Vuine 2006; Bach, Dörner, Gerdes and 
Zundel 2005). The name ‘MicroPsi’ credits the inevitable limitations that we had to 
introduce into our small model, which inevitably will only be fulfilling a sub-set of 
the Psi theory’s goals. 

3.1 Goals of the MicroPsi project 

In our attempt to understand, structure and summarize the Psi theory, we soon 
discovered that the existing implementations of the Psi theory by Dörner and his 
group were very fragmentary and difficult to extend. Many cognitive models suffer 
from usability problems (Ritter, Jones and Baxter 1998; Ritter et al. 2002, pp. 29), and 
the Psi implementations of EmoRegul (Dörner, Hamm and Hille 1997), the Island 
game and the 3D island (discussed in the first section) make no exception. It became 
clear that, in order to set up experiments, design Psi agents, test and extend the theory 
and to make the work accessible to others, we would need to design a new 
implementation of the agents, their representational structures, the modeling tools and 
the simulation framework from the ground up. 

3.1.1 A framework for cognitive agents 

This work is not just an attempt to explore the hidden structure of Dörner’s work and 
discuss its flaws. Beyond that, it was our goal to carry the Psi theory into AI and 
Cognitive Science. Our model should be structured and general enough to act as a 
foundation for further research, not just within our group, but also for others with an 
interest in cognitive modeling. Eventually, we decided that this new implementation 
would have to meet the following criteria: 

- Robustness: Using established software engineering techniques, we wanted to 
achieve a powerful and extensible software design that could be adapted to 
future changes, different hardware and various applications without rewriting 
and restructuring it. 

- Platform independence: MicroPsi was to run on various operating systems, as 
a distributed application, through web interfaces, on stand-alone systems and 
possibly even on embedded platforms for application in robotics. 

- Speed: The system would have to be fast enough to support large 
neurosymbolic representations within a single agent, large agent populations 
and large simulation environments. 
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- Multi-agent capabilities: Groups of MicroPsi agents should be able to interact 
with each other in simulated environments. 

- Networking capabilities: It should be possible to run all components on a 
single machine, but if agents get larger, we will need the opportunity to run 
them on independent machines. Likewise, the simulation environment and the 
viewer applications may have to run on independent machines. 

- Robotic interface: Just as a MicroPsi agent creates representations based on 
sensory input that arrives through input neurons connected to a simulated 
world, and acts by sending actions through actuator neurons, it should be 
possible to connect it to a real environment by linking it to robotic sensors 
and actuators. 

- Human-computer interface: For experiments comparing human performance 
with agent performance, and for the supervision and demonstration of 
experiments, the platform would need a viewer application that could be 
adapted to different experimental setups. 

 
Besides this technical set of criteria, we wanted to meet a number of goals with 
respect to the theory. Specifically, we liked the monolithic neurosymbolic 
representations suggested by the Psi theory, which would use spreading activation 
networks to construct object representations, control structures, associative memory 
and motivational system—in short, every aspect of the agent. This was the feature that 
we missed most in the actual implementations of Dörner’s group. With the exception 
of DAS (Hämmer and Künzel 2003), a simulator for threshold elements that was used 
as a demonstrator and classroom tool for parts of the motivational system and the 
principles of spreading activation in memory, every model replaced the 
neurosymbolic representations with rigid pointer structures in Delphi (for object 
representations and protocols) or omitted them completely (for all other control 
structures). Thus, the core of the MicroPsi framework would be an editor and 
simulator for spreading activation networks. The representations should be: 

- Monolithic: All control structures of the agent are expressed with the same 
representational structures. 

- Neurosymbolic: Using the representations, we want to demonstrate both 
planning and neural learning. Thus, we would need a formalism that can be 
utilized for distributed and localist representations. 

- Integrated with high-level programming language: Building control 
structures for learning, planning, controling robots etc. from single neural 
elements would not just be painstaking and error-prone—it is practically 
infeasible, and execution would be prohibitively slow. Thus, the neural 
representations would have to seamlessly incorporate programming code in a 
standard high-level language. 

- Independent of the application: With a neurosymbolic interface, the 
representations should be compatible with both simulated and physical 
environments. Drivers for robotic hardware would have to be hidden by 
software adapters that are addressed with neural activation values in real-time. 
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- Conforming to the theory: The representational entities and the way they are 
used should be as close as possible to the theory. This does not necessarily 
mean a restriction to threshold elements; rather, we wanted to find a viable 
way for using a concise notation for executable, hierarchical semantic 
networks that includes Dörner’s quads and register neurons as meaningful 
sub-set.  

- Extensible where necessary: The Psi theory does not include link types for 
“is-a”  and symbolic reference. I think that this might be a shortcoming,  
especially since Dörner has added ad hoc-link types in his implementations 
when he was confronted with the problems posed by their omission, for 
instance color-links, and linguistic reference (‘pic’ and ‘lan’). 

 
In the following section, I will describe the representations used to meet these 
demands—the MicroPsi Node Nets—and the framework that we have developed to 
design and run MicroPsi agents. But first, let us have a look at what such an agent 
should look like. 

3.1.2 Towards MicroPsi agents 

The design of Dörner’s Psi agent, especially in the ‘Island’ simulation, is not only 
determined by the theory but largely by the software technology that was used in its 
implementation. The decision to write the software in Delphi, without the recourse to 
object orientation or multi-threading, leads to a monolithic and entirely sequential 
control structure—the activity of the agent is organized in a strict sense-think-act 
loop, that is followed through in every cycle of the simulation. The activity of the 
agent consists of the call to a perceptual sub-routine, followed by an evaluation of the 
motivational parameters, and then a check for possibilities for ‘opportunistic 
behavior’ (actions that are not part of the current plan, but are afforded by the 
environment and allow for instant gratification of an active demand). Next, the agent 
will attempt to establish a plan to satisfy the demands identified by the motivational 
subroutine; either by identifying an already established behavior routine (automatism) 
or by constructing a plan using a hill-climbing search through the space of known 
operators (actions) and pre-conditions (situations). If such a plan already exists, or a 
new one is found, the next applicable action is executed, and the next cycle begins. 

Of course, this does not imply that the theory suggests that the brain waits for 
perception before planning ensues, and eventually triggers actions—in reality, for all 
these faculties, a multitude of specialized processes is active at the same time and on 
several layers. Also, it makes sense to abandon the division between perception, 
action and cognitive behaviors—all these aspects of cognition are actions in some 
way, and differ mainly in the operations that they trigger, i.e. in the actuators that they 
are connected to, and that either initiate and integrate external sensing, or trigger 
cognitive and external behaviors. 

On the other hand, the Psi theory does not really establish an agent architecture—
it is much more a collection of principles and methods; and the sketch of a cognitive 
architecture presented in the first chapter is a derivate of these principles, combined 
with my attempts at abstracting from the current implementations. 
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With this in mind, we may set out to discuss the design of a technical framework 
for such an agent, as well as the representational structures to be used in its 
implementation. 

3.1.2.1 Architectural overview 
The architectural sketch of the MicroPsi agent consists of several main components, 
which are all concurrently active. These components are connected to their 
environment by a set of somatic parameters (like ‘intactness’ and ‘hunger’) and 
external sensors. From these parameters, which are given as activation values in input 
neurons, somatic desires (‘urges’), immediate percepts and modulators are 
automatically derived. The activity of the agent consists of a number of internal and 
external behavior modules. While the former are ‘mental’ actions, the latter send 
sequences of actuator commands to the environment by setting activation levels in 
actuator neurons. 
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Figure 3.1: Overview of MicroPsi agent architecture.  

The representations that can be derived from external percepts (in conjunction with 
knowledge that has been acquired earlier) are stored in the agent’s access memory. 
The agent also possesses a long-term memory that holds its history and concepts that 
have been derived from interaction with the environment. The exchange between long 
term and access memory takes place through a set of autonomous memory 
maintenance processes, which also handle memory decay, concept generation and so 
on. The agent’s internal behaviors are meant to handle its higher cognitive processes. 
They are triggered by motivations and modified by a set of modulators. The 
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management of processing resources between the internal behaviors and the memory 
maintenance mechanisms is handled by the meta-management module. 

This division captures the main principle of cognitive processing embedded into a 
motivational and modulatory system. However, it entails several modifications to 
Dörner’s original layout: It includes a meta-managent module to coordinate resources 
between the different sub-systems (and, in a rapidly changing environment, could also 
be used to trigger alarms and orientation behavior), and memory is separated into 
long-term memory and working memory. The latter change also requires mechanisms 
to exchange information between long-term memory and short-term memory 
(memory maintenance). 

In the Psi theory, there is no dedicated (structurally separate) working memory, 
even though it is usually considered a central component of human cognition (Boff 
and Lincoln 1986, Sec. 7; Just and Carpenter 1992; Newell and Simon 1972; Wickens 
1992). Instead, operations take place on a global memory structure, with several 
exceptions: The ‘inner screen’ allows to temporarily construct anticipated and 
hypothetical situation representations, so that they can be compared with actual 
sensory input. The second exception is the current world model that is continuously 
spun into a protocol by successively adding new instantiations of the current world 
model. (Thus, it is structurally not separate from long-term memory.) All other 
functionality that is usually attributed to a separate working memory is achieved by 
setting temporary links from a set of register neurons, and by using temporary 
activations. This way, an expectation horizon (immediately anticipated events), and 
active plan elements and goal situations can be maintained. 

There are good reasons to reflect the functional separation between strictly 
temporary and permanently stored representational content with different functional 
modules, but the Psi theory’s suggestion of a global memory is shared by several 
other cognitive architectures. For instance, ACT-R and CAPS also treat working 
memory as an activated portion of long-term memory. (For a review on approaches to 
modeling working memory, see Miyake and Shah 1999.) In the MicroPsi agent 
architecture, the distinction is largely technical.  

3.1.2.2 Components 
The working memory of MicroPsi is the portion of memory that subsumes active 
perceptual content, goals, plans etc., while long-term memory contains protocols, 
established behavior routines, information about individual objects and abstracted 
categorical knowledge. 

Here, objects, situations, categories, actions, episodes and plans are all represented 
as hierarchical networks of nodes. Every node stands for a representational entity and 
may be expanded into weighted conjunctions or disjunctions of subordinated node 
nets, which ultimately ‘bottom out’ in references to sensors and actuators. Thus, the 
semantics of all acquired representations result from interaction with the environment 
or from somatic responses of the agent to external or internal situations. For 
communicating agents, they may potentially be derived from explanations, where the 
interaction partner (another software agent or a human teacher) refers to such 
experiences or previously acquired concepts. 



 
 

 
 
 

 229 

Immediate External Percepts

Local Perceptual Space (LPS)

Associative Context Memory

Goal Space

Access Memory (Workspace)

Associative Object Memory

Episodic (Protocol) Memory

Categorial Memory

Plan Memory

Map

Long Term Memory (LTM)

LPS Generation

Memory
Swapping,

Garbage
Collection

Generation of Macros
(Hierarchical Episode and

Action Scripts)

Generation of Concepts
and Categorial Hierarchies

Urges Generator / Body Parameters

MicroPSI Agent

R

UrgeSensor PerceptSensor

Sensors/
Modulators

Maintenance Script Space

Behaviour Script Space / Execution SpaceEmotional
Modulators:

Arousal

Resolution
Level

Selection
Threshold

Motivation
Plan / Behaviour /

Script
Execution

Behavior Selection

Intention Selection

Internal Behaviours

Planning

Goal Creation/Verification

Technical Percept Receiver

R

Meta-Management

Runtime Execution Control

Action

External Behaviors

Technical Action Sender

R

Short Term Episodic Memory

Change Monitoring

Plan Space

Cognitive
Urges:

Competence

Certainty

 
Figure 3.2: Main components of MicroPsi agent architecture.  

The modulatory parameters of the MicroPsi agent define the configuration of its 
cognitive system with respect to arousal, resolution level and selection threshold (in 
dynamic environments, the rate of securing behavior is an additional modulatory 
parameter). This configuration influences how an agent perceives, plans, memorizes, 
selects intentions and acts. The modulation is designed to allocate mental resources in 
a way that is suitable to a given situation and reduce the computational complexity of 
the tasks at hand (see Dörner and Schaub 1998), specifically:  

- The arousal is a parameter to action readiness of different behavior strategies, 
and it influences the depth and breadth of activation spreading during retrieval 
of memory and perceptual content.  

- The resolution level controls the threshold of activation spreading, and 
thereby influences the breadth of search during retrieval.  

- The selection threshold controls the likelihood of motive changes by 
increasing the strength of the currently active motive, thereby reducing 
motive oscillations (i.e. repeated changes between alternate, conflicting 
goals).  
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The agent’s motivational system is based on a number of innate desires (urges) that 
are the source of its motives. Events that raise these desires are interpreted as negative 
reinforcement signals, whereas a satisfaction of a desire creates a positive signal. On 
the “physiological level”, there are urges for intactness, energy (food and water). 
Additionally, MicroPsi agents have cognitive urges, for competence and reduction of 
uncertainty, and a social urge: affiliation. The levels of energy and social satisfaction 
(affiliation) are self-depleting and need to be raised through interaction with the 
environment. The cognitive urges (competence and reduction of uncertainty) lead the 
agent into exploration strategies, but limit these into directions, where the interaction 
with the environment proves to be successful. The agent may establish and pursue 
sub-goals that are not directly connected to its urges, but these are parts of plans that 
ultimately end in the satisfaction of its urges. 

The execution of internal behaviors and the evaluation of the uncertainty of 
externally perceivable events create a feedback on the modulators and the cognitive 
urges of the agent. 

External perceptions are derived from hypotheses about the environment which 
are pre-activated by context and recognized features, and then tested against 
immediate external percepts. Only if the expectations of the agent fail, and no theory 
about the perceived external phenomena can be found in memory (‘assimilation’), a 
new object schema is acquired by a scanning process (‘accommodation’) that leaves 
the agent with a hierarchical node net. Abstract concepts that may not be directly 
observed (for instance classes of transactions—like ‘giving’—or object categories—
like ‘food’) are defined by referencing multiple schemas in such a way that their 
commonalities or differences become the focus of attention.115 

External percepts are mapped into a space of sensors (‘immediate external 
percepts’), from which a representation of the agent environment is created (‘local 
perceptual space’). Changes in the environment are recorded into the agent’s short-
term episodic memory. The mechanisms responsible for this form the autonomous 
external perception of the agent.  

The agent represents actions as triplets of nodes, where the first references the 
elements of a situation that form the pre-condition of an action, the second the 
actuator that leads to the change in the environment, and the last the changes that 
form the post-condition. The actuator often refers to other chains of actions (‘macros’ 
or ‘scripts’), which makes long plans feasible by packing sub-plans into chunks. Since 
all internal behaviors—perception, goal identification, planning, meta-management 
etc.—may be formulated as node chains and can be subject to the evaluation and 

                                                 
115 Here, abstraction should be based on structural similarity or on relevance. For instance, in 
the case of an abstraction like ‘giving’, episodes have to be described using thematic roles, such 
as ‘giver’, ‘given’ and ‘receiver’, which together form an abstract ‘giving schema’, from which 
individual role properties can be inherited to describe a concrete situation more efficiently. The 
abstract schema captures the common aspects of episodes where the control over an object is 
transferred from one agent to another. In the ‘food’ example, abstraction could be achieved by 
grouping instrumental objects of consumptive actions satisfying the food urge into a single 
category. 
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planning of the agent, it has the tools to re-program its own strategies. Eventually, 
language should become a structuring aid for behavior programs. 

MicroPsi agents possess a small set of planning strategies. Given a goal situation 
(which is derived from the motivational process), agents try to find a chain of actions 
that leads from the current situation to the goal (automatism). If no such chain is 
remembered, its construction is attempted by combining actions (see above). This 
may happen by different search algorithms (forward, backward, A* etc.), using 
spreading activation from the goal situation, the current situation, or both, and where 
depth and width of the search are controled by the modulators. 

Although there is no singular control structure (“central execution”), the different 
processes forming the internal behaviors and the memory maintenance are being 
allocated processing resources according to the given situation. This may happen by 
calling them with varying frequencies or by using algorithms that consume different 
amounts of memory and processing time. Thus, different layers of reactivity within 
the agent can be realized. Note that this does not happen by distinguishing behaviors 
based on their level of reactivity, but by promoting a cognitive process if its 
successful execution needs more attention, and by demoting it if it runs smoothly. The 
evaluation of the performance of such processes is the task of the meta-management. 
The meta-management is not to be confused with awareness or some form of 
consciousness of the agent; rather, it is a cognitive behavior like others and can also 
be subject to different levels of processing.116 

Dynamic environments may also require a set of alarms: The MicroPsi agent is 
not guaranteed to execute the meta-management in short intervals or with high 
attention, which can prevent it from reacting quickly to environmental changes. 
Dörner has proposed a ‘securing behavior’ that should be executed by the agent in 
regular intervals, while for instance Sloman (1994) describes a system which he terms 
‘alarms’, with the same purpose: to quickly disrupt current cognitive processes if the 
need arises. In MicroPsi, an orientation behavior would follow if unexpected rapid 
changes in the low level perception or urge detection were encountered. (This is not 
part of the current MicroPsi, because its environment so far contains no predators or 
other hazards that would require quick reaction.) 

 
The memory content of MicroPsi agents is stored as hierarchical networks of nodes, 
which act as universal data structures for perception, memory and planning. These 
networks store object descriptions as partonomic hierarchies, i.e. the nodes are 
organized using ‘has-part’ links (called sub in Dörner’s terminology), and their 
inversions (‘part-of’  or sur, respectively). The lowest level of these hierarchies is 
given by sensor nodes (and actuator nodes) that are directly linked to the 
environment. These elementary representational elements are ‘part-of’  simple 
arrangements of the sensory content that activates the individual sensory hypotheses. 
The relationships within these arrangements, on the same level of the hierarchy, are 

                                                 
116 Here, attention is the focusing of processing resources, while awareness is an integration of 
active elements from different cognitive behaviors into a single process with high attention. 
Awareness is currently not a part of MicroPsi. 
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expressed with spatially and/or temporally annotated successor and predecessor 
relations (por and ret). (Figure 3.3 gives a simple example: Sensors for diagonal and 
vertical line segments are ‘part-of’  spatial arrangements that form either a triangle, a 
square or a diamond. Diamonds and squares may also be subsumed under a more 
general rectangle concept.) 
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Figure 3.3: Hierarchical sensor schema (schematic).  

The nodes may also be arranged into por-linked chains to represent episodes in 
protocol memory, behavior programs and control structures. (See figure 3.4 for a 
simplified action schema.) By alternating action descriptions (portions of the chain 
that ‘bottom out’ in actuator nodes) with sensory descriptions, schemas may refer to 
situations preceding an action, and resulting from an action, respectively. In this way, 
it is possible to express that if the agent finds itself in a matching prior situation, it 
may reach the posterior situation by the execution of a certain action. Using multiple 
por-links, alternative branches of plans and episodic scripts may be described. 
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Figure 3.4: Representation of behavior program (schematic).  

Even though the Psi theory does not distinguish between different types of memory, 
splitting it into different areas (node spaces) helps to clarify the different stages of 
cognitive processing, as well as the different areas of memory. The main distinction 
that has been introduced into MicroPsi is the split into long-term memory and 
workspace. This enables agents to represent and manipulate data quickly according to 
a given context, and to establish and test new hypotheses without compromising 
established long-term memory. 

The main kinds of information in the short-term memory include the actual 
situation, the current course of events, a contextual background for objects in the 
current situation, as well as currently active goals and plans. 

The long-term memory stores information about individual objects, categories 
derived from these objects, a biography of the agent (protocol memory), a library of 
plans and plan-components, and a map of the environment.   

Both long term and short-term memory face a decay of links between nodes (as 
long as the strength of the links does not exceed a certain level that guarantees not to 
forget vital information). The decay is much stronger in short-term memory, and is 
counterbalanced by two mechanisms:  

- usage strengthens the links, and 
- events that are strongly connected to a positive or negative influence on the 

urges of the agent (such as the discovery of an energy source or the suffering 
of an accident) lead to a retro gradient connection increase of the preceding 
situations. 

If a link deteriorates completely, individual isolated nodes become obsolete and 
are removed. If gaps are the result of such an incision, an attempt is made to bridge it 
by extending the links of its neighbors. This process may lead to the exclusion of 
meaningless elements from object descriptions and protocol chains. 

A simple similarity measure of node schemas can be established by a complete or 
a partial match. If the resolution level of an agent is low, the comparison of spatial 
and temporal features and the restriction to fewer features may allow for greater 
tolerances. If the depth of the comparison is limited too, the agent may notice 
structural similarity, for instance between a human face and a cartoon face. However, 
the key to structural similarity is the organization of node schemas into hierarchies 
(where an abstract face schema may consist of eye, nose and mouth schemas in a 
certain arrangement, and can thus be similar to a ‘smiley’). Furthermore, many 
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objects can only be classified using abstract hierarchies.117 It seems that humans tend 
to establish no more than 5–9 elements in each level of hierarchy, so that these 
elements can be assessed in parallel (Olson and Jiang 2002). 

Such hierarchies might be derived mainly in three ways: by identifying prominent 
elements of objects (that is, structures that are easy to recognize by interaction or 
perception and also good predictors for the object category), by guessing, and by 
communication. 

 
Using the broad layout for an agent architecture given above, let us have a look at 
MicroPsi’s representations. 

3.2 Representations in MicroPsi: Executable 
Compositional Hierarchies 

Dörner’s Psi theory introduces its perspective on designing cognitive agents with 
using networks of simple threshold elements. These networks are connected to the 
environment through sensor and actuator nodes. In addition, there are special “neural 
actuator nodes”—they may control the activation within the net, and they may set, 
remove, strengthen or weaken individual links. To form representational units, they 
are organized into groups of central nodes and four ‘satellite nodes’ that act as gates 
for directional spreading of activation; these groups are called ‘quads’. 

The representations used within MicroPsi capture this functionality and add 
enough features to extend them into a graphical design language for agent 
architectures. MicroPsi node nets will have to act both as feed-forward networks 
suitable for backpropagation learning and as symbolic plan representations. Even the 
control structures of our agents are going to be implemented within the same 
networks as are their plans and their representations of the environment. Thus, it is 
not necessary to draw a sharp boundary between categorical abstractions and sensory-
motor behavior. Rather, it is possible to express rules and abstractions as instances of 
localist neural network structures that may even be used to facilitate neural learning. 
We may thus mix distributed representations at all descriptional levels with rules, and 
we can also use rules at the lowest sensory-motor levels, if this is appropriate for a 
given task. 

Because the representations in MicroPsi are meant both as a design tool for agents 
and the vehicle of model perceptual content, protocol memory and so on, we prefer to 
present them graphically rather than in the form of clauses. Instead of a text editor as 
in most other cognitive architectures, the prime tool for creating a model is the 
graphical MicroPsi node net editor. 

                                                 
117 Trees may be a good example: their similarity is not very apparent in their actual shape, 
rather, it is limited to being rooted in the ground, having a wooden stem which is connected to 
the root, and ends in some equally wooden branches on the opposite side, whereby the branches 
may or may not carry foliage. These features form an abstract object representation and need to 
be individually validated when an object that is being suspected to qualify as a tree is 
encountered.  
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3.2.1 Definition of basic elements 

The representational structures of a MicroPsi agent form a network of nodes NN, 
made up of units U (also called ‘net entities’), which are connected by a set of links V. 
The environment may provide input to the net via DataSources. A dataSource is a 
special node, which has an activation value set by an outside process. Analogous, 
there are DataTargets that transmit activation values into the outside environment.  

 net, , , , , fNN U V DataSources DataTargets Act=  (3.1) 

Furthermore, the network needs a function to control the spreading of activation 
(provided by fnet) and a set of activators (Act). Activators regulate directional 
spreading of activation, depending on the type of net-entity. Such a net-entity is 
specified by its id and a type. Activation enters the net-entities through their slots (I) 
and may leave them through their gates (O).  

Besides transmitting activation values through their gates, some specific net-
entities may also manipulate the structure of the net itself, for instance by generating 
new nodes and links, changing link-weights and monitoring the activity of portions of 
the net. This is done by an internal node function, fnode. 
 ( ){ }node node, , , , f , f :U id type I O NN NN= →  (3.2) 

Each slot has a type and an input value in that simply stores the sum of the 
incoming activation of all net-entities linking to it.  

 ( ){ },I slotType in=  (3.3) 

Each slot uji  belongs to a unit u at the position j. The value of each slot uji  is 
calculated using 

net
f , typically as the weighted sum of its inputs. Let ( )1... kv v  be the 

vector of links that connect uji  to other nodes, and ( )1,..., kout out  be the output 
activations of the respective connected gates. 

nvw is the weight of link nv , and 
nvc is 

the certainty annotation of the same link. The input activation of the slot is given by 

 
1

1
u

n nj

k

v v ni
n

in w c out
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The internal activation α of every gate is determined by its activation function fact, 
based in the activation values of the slots and a parameter θ (usually interpreted as a 
threshold parameter). 

 A net-entity may have a different output of activation out at every of its gates. 
This output depends on the internal activation and is calculated with the gate’s output 
function (fout). Among the most important parameters of the output function are the 
minimum (min) and maximum  (max) value of the result, and the amplification factor 
amp. Also, the output function may use the value of the activator corresponding to the 
gate type. 

 ( ){ }outact,, , , , , , f fO gateType out min,max ampα θ=  (3.5) 

 ,
act ,f :u o

u iin θ α× →  (3.6) 

 outf : Act amp min max outα × × × × →  (3.7) 
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Activators allow controling the directional spread of activation through the 
network: there is an activator gateTypeact Act∈  for each gate type, and the node output 
function (3.7) is usually computed as  

 [ ]
o

max

gateType min
out act ampα= ⋅  (3.8) 

(i.e. the range of the output value is constrained to the interval [min, max].) Thus, 
only gates with non-zero activators may propagate activation.118 Gate types 
effectively define the type of links; the default gate type is called ‘gen’. 

The net-entities are connected with weighted links; each link establishes a 
directional connection from a gate 1u

io of a net entity u1 to a slot 2u
ji  of a net entity u2. 

It has a weight w, and an optional spatial or temporal annotation st.   

( ){ } ( )1 2 4, , , , ; , , ,u u
i jV o i w st st st x y z t= ∈ =ℝ  (3.9) 

 
 
Figure 3.5: MicroPsi net-entity 

With these building blocks, we can define different types of nodes. The most simple 
unit, which is the equivalent of Dörner’s threshold element, is a register node, and it 
consists of a single slot, a single gate (of type ‘gen’), connected with a threshold 
activation function. Their output is usually computed as  

 [ ] ,  if ,0 else; 
max

gen genmin
out amp inα α θ α= ⋅ > =  (3.10)  

Using register nodes, it is possible to build simple neural networks, such as 
perceptrons.  

 
 
Figure 3.6: Register nodes have a single slot and a single gate 

The connection to the environment is provided by sensor nodes and actuator nodes. 
Their activation values are received from and sent to the agent world (which can be a 
simulation or a robotic environment). Sensor nodes do not need slots and have a 

                                                 
118 For some specific applications, especially for certain types of neural networks and 
corresponding learning functions, it may be desirable to use different output functions. In 
current implementations of MicroPsi, the default output function may be overwritten with an 
arbitrary function of the parameters. 
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single gate of type ‘gen’; their activation genout  is computed from an external variable 
SdataSource DataSources∈ (where S is the current node space, see below): 

 [ ] ,  if ,0 else; 
max

gen genmin
out amp in dataSourceα α θ α= ⋅ > = ⋅  (3.11) 

Actuator nodes transmit the input activation they receive through their single slot 
(also type ‘gen’) to a dataTarget. At the same time, they act as sensors and receive a 
value from a dataSource that usually corresponds with the actuator’s dataTarget: The 
technical layer of the agent framework sends the respective dataTarget value to the 
agent’s world-simulator, which maps it to an operation on the simulation world (or to 
an actuator state of a robot) and sends back a success or failure message, which in 
turn is mapped onto the actuator’s dataSource. Thus, on success of an action, genout of 
the actuator is normally set to 1, and on failure to -1. 

 

 
 
Figure 3.7: Concept nodes capture the functionality of Dörner’s ‘quads’. 

The ‘quads’ of the Psi theory could be implemented using arrangements of register 
nodes, but this would not be very practical. The ‘quad’ units are the primary part of 
the representations in the memory of Psi agents, so—for reasons of clarity, usability, 
processing speed and memory usage—they are treated as a single unit. In MicroPsi, 
this unit is called concept node. Concept nodes are like register nodes; they have a 
single incoming slot, but in addition they have several kinds of outgoing links (i.e. 
types of gates). Each kind of links can be turned on or off to allow for directional 
spreading activation throughout the network, using the corresponding activator. 
Concept nodes allow the construction of partonomic hierarchies: the vertical direction 
is made of by the link type sub, which encodes a part-whole relationship of two 
nodes, and the link type sur, which encodes the reciprocal relationship. Horizontally, 
concept nodes may be connected with por-links, which may encode a cause-effect 
relationship, or simply an ordering of nodes. The opposite of por-links are ret links. 
Additionally, there are link types for encoding categories (cat and exp) and labeling 
(sym and ref). (Labeling is used to associate concepts with symbols, especially to 
establish a relationship between object representations and words for the respective 
object.) Again, note that link type translates into a link originating from a gate of the 
respective type. 
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Using these basic link types, concept nodes can be embedded into different 
representational contexts by associating them to each other with part-whole 
relationships (sub/sur), successor/predecessor relationships (por/ret), 
category/exemplar relationships (cat/exp), and symbol/referent relationships 
(sym/ref). The gen-link may be used to read the activation directly, as it is summed up 
at the incoming slot of the concept node. 

 

 
 
Figure 3.8: Basic relations of a concept node. In the editor (see below) the start and end 
positions of links correspond to the type: por- links go from left to right, ret links from 
right to left, sub links start at the bottom of an node, sur-links at the top, cat and sym 
originate at the upper right/upper left corner; their inverses exp and ref at the lower 
corners. 

Register nodes, concept nodes, sensors and actuators are the basic building blocks of 
MicroPsi representations. In addition, there are several node types which aid in 
controling the networks, or which make their design easier for the experimenter: 

Activators: The net entities in a node net may receive their activation either 
through a dataSource, i.e. from outside, or through an activator. A node of the type 
‘general activator’ is like an actuator node that raises the activation of all nodes 
within the net to its own level.  

The spreading of activation in the node networks in cycles. In each cycle, 
activation is summed up in the slots. If a net-entity becomes active and it has a node 
function, then this function is called (it is also possible to define node functions that 
are called in every cycle, regardless of the activation of its host entity). Finally, the 
activation values for every gate are calculated; in the next cycle, these will be 
multiplied with the weights of the outgoing links and define the input activation of the 
connected slots. 

To initiate directional spreading activation, the activator of the respective gate 
type has to be active. For instance, to have activation spread along the por-links 
within a set of concept nodes, the activator Actpor has to be switched on: now, an 
active concept node may transmit its activation through its por-gate. 

Associators: In accordance with the Psi theory, associator nodes may establish 
new links or strengthen existing ones. An associator has a single slot (gen), and two 
gates: a gen gate and an associator gate. The net-entities connected to the associator 
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gate are called the field of the associator. If an associator becomes active, it 
establishes a connection between the gates of all currently active nodes (except itself 
and the nodes directly activated by it) and the active slots within its field. The weight 

1 2
jiu u

w  of this connection (between the i th gate of u1 and the jth slot of u2) at time step t 
is calculated as  
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where 
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t
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w −  is the weight at the previous time step, and [ ]0,1associationFactor∈ℝ  

a constant (see figure 3.13 for a step-by-step illustration of association). The inverse 
functionality to associator nodes is provided by dissociators, which can weaken the 
links. In MicroPsi, links with a weight of zero disappear.  

Node spaces: As an additional structuring element, net-entities may be grouped 
into node spaces. A node space is a portion of the node net which contains a set of 
net-entities and activators, and may have its own DataSources and DataTargets. From 
the outside, such a node space looks like a normal net-entity, with slots and gates; 
these are connected to the internal DataSources and DataTargets. Inside, the node 
space looks like a separate node net, and can contain further node spaces.  

 ( ){ }, , , , fnetS U DataSources DataTargets Act=  (3.13) 

Every node space has exactly one parent. As a result, the nodes form a tree 
hierarchy, with the node net itself being the root. 

Node spaces have two functions: They constrain the area of influence for 
activators and associators (so different node spaces may perform different modes of 
operation), and they are a structuring tool for designing agents. Encapsulating 
functionality of the agents within node spaces helps in creating a modular design and 
makes it much easier for others to understand the make-up of the agent, in much the 
same way as a directory structure helps to keep track of the data stored in a file 
system. 

Native programming code: To perform operations on the structure of the net, one 
would also have to define node creators and various other control entities. However, 
during agent development it turned out that such a methodology is awkward to use, 
and we would frequently want to introduce new types of special net-entities whenever 
the need arose. Also, while a graphical programming language is intuitive when 
looking at object schemas, plan fragments and episodic schemas that have been 
acquired by the agent autonomously, it is difficult to use when it comes to 
implementing complex control structures, such as backpropagation learning, graph 
matching and so on, because the resulting control structures quickly become large, 
sophisticated puzzles, which are very difficult to read and extremely hard to validate 
and debug. These reasons have lead John Anderson’s group to abandon the neural 
implementation of ACT-R (Lebière and Andersion 1993) in favor of rule-based 
definitions that are implemented in a logic programming language. Likewise, Dörner 
has implemented his agents in Delphi and only emulated some of the functionality of 
the ‘quad’-networks as pointer structures.  
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Figure 3.9: Native module (‘script execution’: a node with internal functionality to 
perform execution and back-tracking in hierarchical scripts) 

In MicroPsi, we have taken the opposite approach. Here, the functionality of a normal 
programming language may be encapsulated in individual nodes, called native 
modules. Native modules have access to an abstraction of the underlying structure of 
the node nets, they may read and alter link weights, activation values and annotations, 
and they may create and remove nodes. In the current version of the editor, the 
programming language of native modules is Java, and code may be conviniently 
changed and rewritten without restarting the agent. Native modules may have 
arbitrary slots and gates, which are provide the interface between its node function 
(the internal program) and the rest of the network. 

3.2.2 Representation using compositional hierarchie s 

In MicroPsi agents, there is no strict distinction between symbolic and sub-symbolic 
representations. The difference is a gradual one, whereby representations may be 
more localist or more distributed. For many higher-level cognitive tasks, such as 
planning and language, strictly localist structures are deemed essential; in these 
procedures, individual objects of reference have to be explicitly addressed to bring 
them into a particular arrangement. However, a node representing an individual 
concept (such as an object, a situation or an event) refers to subordinate concepts 
(using the sub-linkage) that define it. These subordinate concepts in turn are made up 
of more basic subordinate concepts and so on, until the lowest level is given by sensor 
nodes and actuator nodes. Thus, every concept acts as a reference point to a structured 
interaction context; symbols are grounded in the agent’s interface to its outer and 
inner environment. 

Hierarchies: abstract concepts are made up of more basic concepts. These are 
referenced using sub-links (i.e. these sub-linked concepts are “part-of” a concept). 
Because these concepts made up of sub-linked concepts as well, the result is a 
compositional hierarchy (in this case, a partonomy).  
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Figure 3.10: Hierarchical sensor schema (see figure 3.3). The lowest level is given by 
sensors, which are embedded into pairs of concept nodes. Horizontal links are por/ret; 
vertical links are sub/sur. 

Sequences: to encode protocols of events or action sequences, sequences of 
concepts need to be expressed. This is done by linking nodes using por-connections. 
por acts as an ordering relation and is interpreted as a subjunction in many contexts. 
The first element of such a por-linked chain is called the head of a chain and marks 
the beginning of execution on that level. These sequences may occur on all levels of 
the hierarchy. Both plans/episodic schemas and object schemas are mixtures of 
sequences and hierarchies; in fact, object schemas are plans on how to recognize an 
object, and the spatial annotations between elements in a sequence are interpreted as 
actuator parameters for the movement of a foveal sensor. 

Disjunctions: Since there might be more than one way to reach a goal or to 
recognize an object, it should be possible to express alternatives. Currently this is 
done by using sub-linked concepts that are not por-linked, that is, if two concepts 
share a common sur/sub-linked parent concept without being members of a por-chain, 
they are considered to be alternatives. This allows to link alternative sub-plans into a 
plan, or to specify alternative sensory descriptions of an object concept. 

 



 
 

 
 
 

242 The MicroPsi architecture 

 
Figure 3.11: Expressing conjunctions, reciprocal link directions (ret and sur) have been 
omitted 

Conjunctions: in most cases, conjunctions can be expressed using sequences (por-
linked chains), or alternatives of the same concepts in different sequence (multiple 
alternative por-linked chains that permute over the possible sequential orderings). 
However, such an approach fails if two sub-concepts need to be activated in parallel, 
because the parts of the conjunction might not be activated at the same time. 
Currently we cope with this in several ways: by using weights and threshold values to 
express conjunctions (figure 3.10a), with branching chains (figure 3.10b) or with 
reciprocal por-connections (figure 3.10c). In the first case, we encode the relationship 
to the parent by setting the weights ω1..n,i of the sur/sub-links from the alternatives u1..n 

to the parent ui and a threshold value θi of ui such that ∑ω1..n,i > θi and ∑ω1..n,i − ωj,i < 
θi for all individual weights ωj,i of an alternative uj ∈ {u1..n}. In the second case, we 
are using two por-links (i.e. two por-linked chains) converging onto the same 
successor node, and in the third, we are defining that fully por-connected topologies 
of nodes are given a special treatment by interpreting them as conjunctive. 

Temporary binding: because a concept may contain more than one of a certain 
kind of sub-concept, it has to be ascertained that these instances can be distinguished. 
Linking a concept several times allows having macros in scripts and multiple 
instances of the same feature in a sensor schema. In some cases, distinguishing 
between instances may be done by ensuring that the respective portions of the net are 
examined in a sequential manner, and activation has faded from the portion before it 
is re-used in a different context (for instance, at a different spatial location in a scene). 
If this cannot be guaranteed, we may create actual instances of sub-concepts before 
referencing them. This can be signaled by combining partonomies with an additional 
link-type: cat/ref, which will be explained below. Note that sensors and actuators are 
never instantiated, i.e. if two portions of the hierarchy are competing for the same 
sensor, they will either have to go through a sequence of actions that gives them 
exclusive access, or they will have to put up with the same sensory value. 

Taxonomic relationships: If two different por-linked chains share neighboring 
nodes, and the relationship between these nodes is meant to be different in each chain 
(for instance, there is a different weight on the por and ret links, or the direction of the 
linkage differs, if they have different orderings in the respective chains), the specific 
relationship can not be inferred, because por-links are not relative to the context given 
by the parent. This can be overcome by making the chain structure itself specific to 
the parent, and linking the nodes to the chain structure via cat/exp-links (figure 3.12). 
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Figure 3.12: a) Sharing of differently related features may lead to conflicts.  
b) Separating features and relationship with respect to parent. 

Thus, the structural intermediate node may hold activation values of the exp-linked 
actual concept, which itself may be used in other contexts as well. Of course, an 
intermediate node may have more than one exp-link. In this case, the linked concepts 
become interchangeable (element abstraction). The intermediate node may be 
interpreted as a category of the exp-linked concepts. Using cat and exp links, it is 
possible to build taxonomic hierarchies. In conjunction with sub and sur, MicroPsi 
node nets may be used to express hybrid or parse structures (Pfleger 2002). 

Within MicroPsi agents, cat/exp links are also used to reference different instances 
of the same concept, for instance in plans and in the local perceptual space. Here, cat 
links may act as pointers to the actual concepts in long-term memory; cat may usually 
be interpreted as an “is-a” relationship. 

3.2.3 Execution 

Behavior programs of MicroPsi agents could all be implemented as chains of nodes. 
The most simple and straightforward way probably consists in using linked concept 
nodes or register nodes that are activated using a spreading activation mechanism. 
Figure 3.13 gives an example: (a) A chain of register nodes is gen-linked; an 
associator is linked to the second register node in the chain. In addition, five register 
nodes are linked to the associator; the upper three are connected to its gen-gate, and 
the lower three to its association gate. The first node of the chain carries activation. 
(b) The activation spreads from the first node in the chain to the second. Because the 
first node is not connected to an activation source, it becomes inactive. (c) The second 
node activates the third, and also the associator and some of the nodes within its field. 
(d) The associator establishes new links between the gates of the active nodes not 
linked to it (in this case, the third node of the chain) and the slots of the active nodes 
within its field. (e) The activation continues along the chain; the two new links 
between the third node in the chain and the nodes in the field of the associator remain. 
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a)   b) 

  
 
c)   d) 

   
 
e)    

 
 

Figure 3.13: Execution of a chain of register nodes by spreading activation (here: 
linking of nodes to the field of an associator) 

Conditional execution can be implemented using sensor nodes that activate or inhibit 
other nodes. Portions of the script may affect other portions of the script by sending 
activation to associator nodes or activator nodes. While this programming paradigm is 
theoretically sufficient, it is unintuitive and error-prone.  

3.2.3.1 Execution of hierarchical scripts 
For complex behavior programs, a formalism that includes backtracking and re-using 
portions of the script as macros is desirable.  

For our purposes, a hierarchical script consists of a graph of options O, actions A 
and conditions C. Options might follow each other or might contain other options, so 
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they can be in the relationships succ(o1, o2), pred(o1, o2) iff succ(o2, o1), contains(o1, 
o2) and part-of(o1, o2) iff contains(o2, o1). They might also be conjunctive: and(o1, o2) 
iff and(o2, o1), or disjunctive: or(o1, o2) iff or(o2, o1). The following restriction 
applies: and(o1, o2) ∨ or(o1, o2) ∨ succ(o1, o2) → ∃o3: part-of(o1, o3) ∧ part-of(o2, o3).  

Options always have one of the states inactive, intended, active, accomplished or 
failed. To conditions, they may stand in the relationship is-activated-by(c, o), and to 
actions in is-activated-by(o, a) and is-activated-by(a, o). Options become intended if 
they are part of an active option and were inactive. They become active, if they are 
intended and have no predecessors that are not accomplished. From the state active 
they may switch to accomplished if all conditions they are activated by become true 
and for options that are part of them holds either, that if they are member of a 
conjunction, all their conjunction partners are accomplished, or that at least one of 
them is not part of a conjunction and is accomplished and has no predecessors that are 
not accomplished. Conversely, they become failed if they are active, one of the 
conditions they are activated by becomes failed or if all options that are part of them 
and are neither in conjunctions nor successor or predecessor relationships turn failed, 
or if they contain no options that are not in conjunctions or successions and one of the 
contained options becomes failed. And finally, if an option is part of another option 
that turns from active into any other state, and it is not part of another active option, it 
becomes inactive.  

The mapping of a hierarchical script as defined above onto a MicroPsi node net is 
straightforward: options may be represented by concept nodes, the part-of relationship 
using sub links, the successor relationship with por-links etc. (In order to use macros, 
exp-links have to be employed as discussed above in section 3.2.2.) 

Conditions can be expressed with sensor nodes, and actions with actuator nodes, 
whereby the activation relationship is expressed using gen-links. Disjunctions simply 
consist in nodes that share the same sur relationship, but are not connected to each 
other. This way, there is no difference between sensory schemas that are used to 
describe the appearance of an object, and behavior programs: a sensory schema is 
simply a plan that can be executed in order to try to recognize an object.  

Even though the notation of a script is simple, to execute hierarchical scripts, 
some additional measures need to be taken. One way consists in employing a specific 
script execution mechanism that controls the spread of activation through the script. 
We have implemented this as a script execution module that will “climb” through a 
hierarchical script when linked to it (figure 3.14).  

Here, the currently active option is marked with a link and receives activation 
through it. sub-linked options get their intended status by a small amount spreading 
activation. By preventing this pre-activation from spreading (for instance by using 
inhibitory connections from outside the script), it is possible to block portions of the 
script from execution 
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Figure 3.14: Using a native module for script execution 

Actions are handled by sending activation into an actuator node and waiting for a 
specified amount of time for its response. If the actuator node does not respond with a 
success signal, the script will fail at the respective level and backtrack; backtracking 
positions are held in a stack that is stored within the script execution module. 

The drawbacks of this approach are obvious:  
- There is no parallel processing. Only one option is being activated at a time. 

In the case of conjunctive nodes, the activation focus is given to the one with 
the highest pre-activation first. If all conjunctive options have the same 
activation, one is randomly chosen. 

- The activation of the individual nodes poorly reflects the execution state, 
which is detrimental to some learning methods (like decaying of rarely used 
links). 

- The approach does not seamlessly integrate with distributed representations, 
for instance, it is not advisable to perform backpropagation learning on the 
node hierarchy. (It is still possible to add lower, distributed layers that will be 
interpreted just like sensor and actuator nodes, though.) 

3.2.3.2 Script execution with chunk nodes 
It is also possible to devise a specific node type that acts as a state machine. This 
node, called chunk node, spreads activation in the following manner: each node has 
two activation values, the request activation ra , determining whether a node attempts 
to get confirmed by “asking” its sub-nodes, and a confirm activation ca  that states 
whether a node confirms to its parent concepts, where for each node: 0 c ra a≤ ≤  (or 

0ca <  to signal failure). When a node gets first activated, it switches its state from 
inactive to requested. It then checks for por-linking neighbors (i.e. the corresponding 
slot): if it has no unconfirmed predecessors (i.e. nodes that possess a por-link ending 
at the current node), it becomes requesting and starts propagating its request 
activation to its sub-linked sub-concepts. In the next step, it switches to the state wait 
for confirmation, which is kept until its sub-linked children signal either confirmation 
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or failure, or until their sub-linking parent stops sending a request signal. After 
confirmation, the node checks if it has por-linked unconfirmed successors. If this is 
not the case, ca gets propagated to the sub-linking parent node, otherwise ca  is 
propagated to the successor node only. The node then remains in the state confirmed 
until its parent node stops requesting, then goes back to inactive. (Failures are 
propagated immediately.) 

With this mechanism, we can describe conjunctions and disjunctions using 
weighted links. Since the execution of a script is now tantamount to pre-activating a 
hypothesis (the portion of the script we want to try) and its failure or success 
translates into a match with a sensor configuration, we may use the data structure for 
backpropagation and other neural learning methods. The distributed nature of 
execution makes supervision of the execution more difficult, but enables parallel 
distributed processing. (It should be mentioned that we can not use simple chains of 
por-linked nodes with this approach, without also sub-linking each of them to the 
same parent node. This is less of an issue for the script execution module, because it 
can determine the parent of each element of a sequence by parsing backwards along 
the ret-links to the first element. But because this might take additional time in the 
case of backtracking, it seems always a good idea to declare the ‘part-of’ relationship 
of each sequence element explicitly.) 

 
MicroPsi’s representations are sufficient to define an agent, but to run an agent, to 
enable its interaction with other agents, to let it interface to an environment and to 
supervise its activity, a broader technical framework is needed. This is the subject of 
the next section. 

3.3 The MicroPsi Framework 

The following pages deal with the description of MicroPsi’s user interface and the 
components of the framework. I will focus on the interests of a modeler, rather than 
taking the perspective of the software engineer. Yet, if you are merely interested in 
the theory, you might want to skip this part.  

To meet the technical requirements or our project—robustness, speed, platform 
independence and networking capabilities—we decided not to use an AI 
programming language, such as LISP, but to base the MicroPsi framework on the 
Java programming language, and implement it as a set of plugins for the Eclipse 
platform (see Eclipse project homepage, 2007).119 Thus, we could make use of 
Eclipse’s graphical user interface. Technically, the framework consists of an agent 
simulation server, which maintains a multi-agent system, along with an arbitrary 

                                                 
119 The implementation of the MicroPsi framework would not have been possible without the 
contributions of numerous enthusiastic students, especially Ronnie Vuine, who implemented 
large parts of the technical structure and the node net simulator; Matthias Füssel, who is 
responsible for most of the good bits in the world simulator; David Salz, who contributed the 
3D viewer; Colin Bauer, Marcus Dietzsch, Daniel Weiller and Leonhard Läer, who performed 
their own experiments and drove the development with their requests for functionality, and 
many others that improved the framework by supplying their ideas and criticism. 
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number of user console applications and an interface to the world server (figure 3.15). 
A timer component may synchronize agents and server. The world server manages the 
simulation world and may optionally be connected to a viewer component. The 
viewer is a stand-alone application that mirrors the content of the simulation world 
using 3D models and displays it with a display client (game engine). Unlike the other 
parts, it has been written in C++ and is currently available for Microsoft Windows™ 
only. 

The framework may be downloaded, along with additional documentation, on the 
MicroPsi project home page (see MicroPsi homepage, 2007). 

 
 
Figure 3.15: Framework, technical layout 

3.3.1 Components 

From the user’s perspective, the framework is made up of Eclipse views, configurable 
widgets that can be combined into perspectives. A perspective collects the 
components that are used for a particular stage of design or experimentation. For the 
user, the framework presents itself as the node net editor (‘mind perspective’), which 
is the front end for the agent simulation and MicroPsi node net execution, and the 
world editor (‘world perspective’), which acts as a two-dimensional graphical viewer 
to the simulation world component. In addition, there is a monitoring component (‘net 
debug perspective’), which aids in experiments by graphically displaying changes in 
the activation of selected nodes, and a console tool (‘admin perspective’) that 
provides a command line/menu interface to the different components, and allows 
setting parameters like simulation speed, synchronization of components, positions of 
agents and objects etc. (figure 3.16). The Eclipse framework provides several other 
important tools, such as a Java development perspective, a debug shell and a 
repository perspective. 

Additional Eclipse perspectives may be defined by combining views of different 
components as the user sees fit. 
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Figure 3.16: Framework, user perspective 

The configuration of the components is specified in MicroPsi’s runtime preferences. 
Configurations are stored as XML files and determine: 

- The active components of the framework (runner) within the given instance 
of Eclipse. Sometimes it is desirable not to run all components on the same 
machine. 

- The timing parameters (component timer), especially the cycle length, 
whether the net starts automatically, and whether agent and world should be 
synchronized (this is not strictly necessary). 

- The simulation world parameters (component world), for instance the world 
server, its ground-map file, and its configuration data. MicroPsi includes 
continuous and discrete simulations, and different object sets and properties. 
The world component interfaces with the agents through a set of world 
adapters. These provide parameters that can either be read or set by agents. 

- The control console (component console). 
- The server running all the components. 
- The agent framework (component agent framework), which specifies the 

class of the agent, the location of the sources of the agent code (especially the 
native modules), the location of its node nets, its starting state and simulation 
speed, the world adapter of the agent (there are several different sets of 
actuators, for instance for discrete and continuouslocomotion, for robot 
wheels etc., and matching sets of sensors, urges and so on). Also, the server 
where the agent should be run and the number of agent instances are defined 
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here. This is followed by the list of individual agent configurations; it is 
possible to mix agents of different types in a single simulation.  

Optional components include a population server (for evolution of agent 
populations in artificial life experiments) and web components. 

3.3.2 The node net editor and simulator 

The node net editor provides the functionality to define and manipulate the data 
structures defining agents and their representations. Each net-entity is represented as a 
box, with its slots to the left and its gates to the right, and the id, the name of the 
entity, in a title bar. Link types may be identified by the gate of their origin and the 
slot they connect. Concept nodes make an exception: to save screen estate, they may 
be displayed in a more compact format (without slots and gates), and here, the type of 
links is indicated by its origin at the box. Because every net-entity has a slot and a 
gate of type gen, these are not displayed, and gen-links start and end directly at the 
box’ title-bar. 
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Figure 3.17: Node net editor (‘mind perspective’) 
 

 
Components of node net editor (see figure 3.17) 
No. Explanation Remarks 

 1 Net view Displays the pane of the graphical editor 

 2 Net-entity Here, a selected sensor 

 3 Link Here, the selected link between a sensor and a native module 

 4 Update view toggle Turn off redrawing of links to speed up simulation 

 5 Zoom Change the size of the net entities 

 6 Run Start simulation 

 7 Stop Pause simulation 

 8 Step Perform exactly one simulation step, then pause simulation 

 9 Load Load a node net (including configuration) 

10 Save Save a node net 

11 New entity Create a net-entity 



 
 

 
 
 

252 The MicroPsi architecture 

12 New link Create a link between two net entities (using a wizard) 

13 Parent Switch to the parent node space 

14 Cycle delay Adjust speed of simulation 

15 Entity view Displays the properties of the selected net-entity 

16 Id Name of selected entity 

17 Gates List of gates (inputs) of selected entity 

18 Slots List of slots (outputs) of selected entity 

19 Linkage edit view Displays properties of the currently selected gate 

20 Link list  Links that start in currently selected gate 

21 Incoming links view Lists the links that are entering the currently selected slot 

22 Debug source view Provides a data source mit adjustable activation 

23 Text editor view Programming editor to edit native modules 

24 Monitor view Displays activation changes of selected gates 

25 Monitor legend Lists the monitored values 

26 Log view Logs of the individual components 

27 Library view A user defined library of node net fragments 

28 Scripting view An interface to execute a scripting engine 
 

Table 3.3: Components of the node net editor (‘mind perspective’)  

The largest portion of the default editor perspective is taken by the net view, which 
displays net entities and links, and includes controls for loading and saving a net state, 
the creation of entities and links, ascending to the parent node space and controling 
the simulation speed. Alongside the net view, the gates, slots and links of the selected 
entity are displayed. Additional views may display log files and error messages. 
Finally, there is a library of node arrangements, and optionally, a scripting interface 
that allows automatizing operations on the node net. (This is useful for experiments 
that are run in batches, or for the definition of unit tests during agent development). 

3.3.2.1 Creation of agents 
Before a node net can be defined, an agent that hosts it has to be chosen, and if there 
is none, it has to be created. The editor plug-in offers a menu entry for this; when 
creating a new agent, an appropriate configuration file has to be specified. 

MicroPsi offers a range of default agent configurations with different world 
adapters. For instance, there is a ‘Braitenberg agent’, simulating two rotating wheels 
and two light sensors that have an activation which is proportional to the distance to a 
light source. The ‘omni-directional agent’ imitates movement with three equidistant 
omnidirectional casters (these wheels only provide traction in the direction of their 
rotation and glide freely in the perpendicular direction; they have become popular for 
soccer robots (Rojas and Förster 2006). There is also a ‘steam-vehicle agent’ which 
provides a MicroPsi agent that is quite similar to Dörner’s steam locomotive of the 
Island simulation. 

It is also possible to specify new configurations that include different interfaces, 
such as access to camera images and robotic actuators. 
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3.3.2.2 Creation of entities 
Using the context menu at an empty position of the editor view, or by clicking on the 
entity creation widget, a node (register, concept, sensor, actuator, associator, 
dissociator, activator, deactivator, or directional activator), a node space (with an 
arbitrary number of named slots and gates) or a native module may be created. 

Native modules are always stored within agent projects; they are distributed as 
Java classes along with the net. There may be several agent projects in the workspace 
at the same time, each with its own set of native modules, but during the creation of a 
native module, it is possible to import it from another agent project. 

In the creation dialogue, a name (id) and an optional comment may be given to the 
entity. If no name is specified, a time stamp is used as a default. 

Links are generated with the link creation widget or by right-clicking on the gate 
of origin. Using the creation widget, it is possible to choose the net entities to connect 
from a menu, which is helpful when linking between nodes in different node spaces. 

Sensor nodes and actuator nodes will not be functional if they are not connected to 
a data source or a data target. (Data sources and data targets are specified in the 
agent’s configuration file and provided by the world adapters.) This is done using 
their context menu, which provides a dialogue that lists all applicable connections. 
For testing purposes, the toolkit supplies the debug source, a data source that provides 
a slider widget to set its activation. 

3.3.2.3 Manipulation of entities 
By selecting a node, its slots and gate parameters become accessible for viewing and 
can be directly manipulated. When a slot is selected, its incoming links are listed. 
Upon selection of a gate, the gate parameters are displayed. These are: 

- The entity that the gate belongs to, and the gate’s type (these entries are not 
editable). 

- The activation (it is possible to set a temporary activation here; it will pass 
into the net, but the gate will become inactive again in the next cycle). 

- The minimum and maximum of the gate output. 
- An amplification factor that is multiplied with the gate activation. 
- A parameter specifying whether the links connected to it deteriorate over 

time. 
- The output function and its parameter θ: a set of functions has been pre-

defined already, including threshold functions, bandpass filters and sigmoids. 
Alternatively, the experimenter may specify an arbitrary calculation here, 
which might even include the gate activation from the previous simulation 
cycle. Thus, it is possible to implement a gradual decay of activation in a 
straightforward way. 

 
Selecting (double clicking) links allows editing their weights and annotations; 
selecting native modules opens an editor with their internal definition as Java routine. 

Links may lead into other node spaces or originate from there. Because only a 
single node space is displayed at a time, these links are marked by small red 
connector widgets. To trace such a link, select it, and right-click on it in the linkage 
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edit view (for outgoing links) or in the incoming links view (for incoming links). The 
editor then opens a context menu that allows jumping to the connected entity.  

A double click on a node space module changes the editor view to show its 
contents. Using the context menu of net entities, they may be aligned, linked, and 
their links may be traced to the connected entities (a helpful function, because links 
may lead into different node spaces). 

Portions of the net may be copied, pasted and deleted, or they may be dragged into 
a library view, from which they can be inserted into different agent designs at a later 
time. 

Native modules, the preferred method of introducing complex functionality into 
the network structures, are defined relative to agent projects. When inserting a native 
module into a nodespace, first the respective agent project has to be selected, and then 
the module is chosen. To change the functionality encapsulated in a native module, it 
can simply be opened (by double-clicking). This displays the internal programming 
code (a Java object) in the text editor of the programming environment. These 
changes take effect immediately.  

3.3.2.4 Running an agent 
The activity of net-entities and gates and the strength of and activation transmitted 
through a link are indicated by color. Inactive gates are grey, and inactive links with 
positive weights have a shade between light grey and black, depending on their 
weight (i.e. a weak link is light grey, while a strong link appears as a dark stroke). 
Links with negative weights have a shade of blue. (To display the strength of the links 
numerically, turn on link annotations in the preferences.) 

As soon as net-entities, gates or links become active, they turn to a shade of green 
(if the activation is positive) or red (for negative activation). The shade of an active 
link is determined by the output activation of the gate of their origin, multiplied with 
their weight. 

The editor contributes controls to the Eclipse icon bar; these allow to start and halt 
the simulation, or to perform a stepwise execution the node net. During the execution 
of the net, activation can be observed as it is wandering through links and passing 
through net-entities. Because the time necessary to redraw the node activations and 
links might slow down the simulation when there are more than a few hundred 
entities, there is also a button to turn disable the visible update of links.  

3.3.3 Monitoring an agent 

Monitoring the execution of experiments is abetted by a variety of tools, the most 
important being the logging tools and the console. Logs are written by all components 
of the system, including native modules, which may thus be used to display and 
record arbitrary data. Of course, console output may also be sent directly to other 
applications for real-time display. 

The MicroPsi framework also provides a simple real-time diagram widget 
(parameter view). Simply select one of the gates in the entity view, and attach a 
monitor to it through its context menu. You also may assign a color and a descriptive 
name. The parameter view will then display the value of activity in the monitored 
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gate, as it changes over time. Because all activation changes in the network manifest 
themselves at the gates of net-entities, the parameter view is helpful for instance to 
track the strength of urge signals of agents. 

 
 
Figure 3.18: Monitoring agent activity with the parameter view widget 

If the MicroPsi server (i.e. the agent simulator and/or the world component) run on a 
different machine than the agents themselves, the need for remote controling 
individual components arises. This functionality is delivered by the admin 
perspective, offering an interface to all the components of the framework. Using the 
admin perspective, the agent server, the world server and the timer component can be 
queried for state information and given commands.  
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Figure 3.19: Administration perspective 

3.3.4 Providing an environment for agent simulation  

MicroPsi agents are control structures for robotic agents, which are embodied in a 
virtual or physical environment. MicroPsi node nets talk to their environment through 
sensors and actuators, which are mapped to data sources and data targets, 
respectively. World adapters are the software components that supply values for data 
sources from environmental data, or make sure that changes are administered to the 
environment according to the values sent to the data targets of a node net. While a 
world adapter may interface physical sensors, such as a camera image, and send data 
to the servo engines driving a robotic arm or wheel, most applications will make use 
of a simulation world. 

Using a simulator instead of a robotic body does not only reduce the cost and 
mechanical overhead of experiments; it is also much harder and computationally 
expensive to tackle the difficulties of real-world physics, and because of this, most 
contemporary applications of robots in Cognitive Science focus on the learning of 
motor skills, on perception under very limited circumstances, on locomotion in very 
restricted environments, and on action with a very limited set of interaction 
modalities. Conversely, it is relatively straightforward to provide a simulated robot 
with simplified locomotion, perceptual capabilities and a large set of possible actions. 
Simulations are well suited for many tasks, like studying the interaction between 
several agents, mapping and exploration, image processing using computer generated 
images of the environment, classification, planning, memory, affective reasoning and 
so on. Some scenarios are especially difficult to investigate using robots, especially 
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when it comes to evolving agent populations, or having large numbers of agents 
interacting at the same time. 

Simulation comes at a price, though. The closer the scenario gets to low-level 
perception and interaction—tasks like visual categorization in the wild, or guesture 
recognition, for instance—the more difficult and computationally expensive does it 
get to set up a suitable simulation world. Also, whenever the agents are required to 
discover and classify objects, events, strategies and solutions on their own, it is likely 
that they are limited by the provisions of the programmer of the virtual world; where 
humans actively create order in an immensely heterogenous reality, simulated agents 
often only re-create the predefined design of the architects of their software world. 
But even in those cases, robots will not always mitigate the problem, as long as the 
robot can not make sufficient use of its senses and actuators to be truly embedded into 
our world.  

3.3.4.1 The world simulator 
MicroPsi’s simulation component provides a server for objects interacting in a three-
dimensional space. Since our experiments usually take place on a plane, the editor and 
display tools are tailored for simple and flat two-dimensional environments. 

Thus, the environment is rectangular and made up of rectangular ground tiles, 
which may either admit agents or prevent them from entering. Ground tiles may also 
have additional properties, like damaging agents or slowing them down, providing 
nutrition to simulated plants and so on. To simplify the design of the world, the 
different types of ground tiles are specified within a configuration file and their 
arrangement is defined in a bitmap file: in MicroPsi, this map is the territory. 

The basic interface to the simulator is provided through the administration 
perspective, where objects may be created, changed or removed, the speed of the 
simulation adjusted, the server configured, restarted and so on, using a console 
window. For most experiments, however, it is not necessary to use this, and access 
takes entirely through the intuitive world perspective. 
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Figure 3.20: Editor for the simulation environment (‘world perspective’) 
 

 
Components of world editor (see figure 3.20) 
No. Explanation Remarks 

 1 Object list view Displays a hierarchical list of all current objects  

 2 Property view Lists the properties of the currently selected object 

 3 3D viewer (Optional) three-dimensional view of the simulation 

 4 3D engine start Start three-dimensional viewer (as separate application) 

 5 World view Displays a pane with a two-dimensional view of the simulation 

 6 Object Object in the simulation (here: a selected tree) 

 7 Zoom Change scale of world map 

 8 Overlay toggle Display overlays on world view 
 

Table 3.4: Components of the world editor (‘world perspective’)  
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The world perspective is mostly taken up by a view of the world map, which contains 
agents and objects; the basic map overlay itself is identical to map of ground tiles, or 
is at least drawn to reflect the different ground types of the territory. Agents may 
navigate these ground types using movement actions. The outcome of movement 
actions depends on the type of ground tile the agent is standing on, the tile below the 
target position and, possibly, obstacles inbetween. 

Objects in the world can be manipulated by selecting (clicking) them, either in the 
map view or in the object list view; they may then be dragged around, or their 
parameters can be changed in the object property view. 

Sometimes it is desirable to interact with an agent directly, in the guise of another 
agent. This functionality is provided by an optional 3D view, which embeds a graphic 
engine rendering a three-dimensional perspective of the simulation world. Another 
application of the 3D view is the provision of rendered images as input to agents 
capable of low-level visual perception. 

3.3.4.2 Setting up a world 
Simulation worlds are defined using configuration files, which specify most of their 
features, such as their size, their ground-map files, the properties of the different 
ground types, the available object types, the agent server, the visible area and the 
default location of new agents (“spawn point”). 

The configuration is also the place where the timer component (which controls the 
speed of the simulation) is indicated. Note that the simulation may use a different 
timer than the agents, so that agents and simulation do not need to act synchronously. 
Since the simulator, just as the node net simulator of the agents, relies on discrete 
steps, if may sometimes be desirable to run it at a higher resolution than the agents to 
approximate the smooth transitions of a real-world environment. 

At each simulation step, the world maintains a list of registered objects, along with 
their positions and movement vectors. In addition to providing an interface for objects 
to change these positions and vectors, it grants a number of services to the objects, 
which facilitate their interaction. These services allow agents to perceive and act on 
objects (for instance, by eating them). They make it also possible for objects to age 
and disappear, and to influence each other by sending messages, which may be 
restricted to the vincinity of objects, and can also be subject to an adjustable delay. 
This way, water reservoirs may influence the growth of plants around them, or a 
wildfire may spread from a dry plant to its neighbors. Also, objects may have 
offspring, for instance, an apple tree object may spawn apple objects in its vincinity, 
which over time could change and mature into new apple trees. 

The toolkit includes configurations for some relatively simple pre-defined 
environments, such as islands reminiscent of Dörner’s simulations and populated by 
different kinds of plants, and a Martian setup providing different types of rocks and 
tools. 

3.3.4.3 Objects in the world 
With the exception to the ground map, the world simulator relies entirely on objects. 
Objects are characterized by their name, their unique id, their class, whether they are 
persistent or perishable, the damage they can take, their position, orientation, 
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bounding box, weight and move vector.  Also, objects may have states, whereby state-
transitions may be triggered by events in the world, and have consequences for the 
behavior and properties of the object. 

Objects may be made up recursively of sub-objects, for instance, a tree may 
contain a crown and a trunk, and the crown may contain twigs, leaves and fruit, and 
so on. Object parts are objects in their own rights, with a position and orientation 
relative to their parent object. To simplify perception and interaction, object that are 
part of the same parent are arranged in a list-like structure, so agents may 
incrementally probe through them. 

The individual object classes may offer additional properties and afford different 
actions. The class of edible objects, for instance, have a particular content of nutrients 
and water, and they afford eat and drink actions. The class of light sources provides a 
brightness function that affects each position in the map in a different way, and so on. 

Agents are a special class of (usually perishable) object. While they share most of 
their properties with ordinary objects (they may even act as food and contain a 
nutritional value for predators), they can perceive and act upon the world. This is 
done by sending perceptual data to a node net, and by receiving actuator data from 
there. 

For the purpose of displaying object in the editor, there is a configuration file 
relative to each world definition, which maps object types, object states and 
orientations to bitmaps. 

Objects can simply be created by right-clicking into the editor, and their properties 
may be accessed and changed in the object property view.  

If an agent is created in such a way, it will not be connected to a node net. It has 
no place to send his perception, and there is nothing to control its actions—thus, it 
will just be an empty husk. 

3.3.4.4 Connecting agents 
The simplest way of creating agents and connecting them to the simulator is through 
the agent creation wizard which is accessible in Eclipse’s main menu bar. The wizard 
asks for the specification of an agent configuration file, which in turn refers to the 
type, world adapter and properties of the agent. 

Agent types are characterized by their controler, their action translator, their 
percept translator and their urge creator. 

An agent controler checks if an agent is ready to receive perceptual data (the 
agent may also explicitly ask for such data). If perceptual data is available, it notifies 
the agent. On the other hand, it notifies the world component if the agent sends an 
action, and sends back the action result. 

Actions on world and its objects are implemented using the action translator, and 
the actual transmission of the perceptual data into the agent (where it is usually 
mapped on some data source) is done by the percept translator. 

Urges are a specific kind of percept that is meant to refer to some “physiological” 
state of the agent, such as hunger or damage. Because urges may depend on additional 
factors, they require additional calculations, which are handled by the urge creator. 
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The place where agents are assigned their controlers, urge creators, action and percept 
translators is called world adapter. World adapters pair a certain world type with an 
agent type. To connect a certain agent definition (i.e. a node net) with a different 
world, simply choose a different world adapter, for instance, to switch a simulated 
two-wheeled robot to the set of sensors and actuators of a matching real-world robot. 

3.3.4.5 Special display options 
For most experiments, the simple two-dimensional view of the simulation 
environment provided by the world editor is adequate. There are applications, 
however, when it does not suffice, and a three-dimensional display is preferable: 
Where the desired input of agents is similar to camera input, the two-dimensional 
representation of the simulation environment needs to be rendered in three 
dimensions. Also, if human subjects are to be compared to the performance of a 
computer model, controling an avatar from the first-person perspective provides a 
much higher level of immersion.  

The MicroPsi toolkit features a 3D viewer application that can be adapted to these 
needs. This viewer is not part of the Eclipse framework  (although it can be embedded 
into an Eclipse view), but an independent module that communicates with the world 
server through a TCP/IP connection, and which, unlike MicroPsi’s other components, 
is currently only available for the Microsoft Windows™ operating system, since it 
relies on Microsoft’s proprietary DirectX™ technology. Its setup is inspired by first-
person computer games, with a slim display client that allows a user to navigate freely 
in a virtual world, and a server component that maintains the data and allows the 
connection of multiple viewers. Using adaptive level-of-detail techniques, it can 
display terrains with viewing distances of several kilometers, containing thousands of 
objects. The role of the server is taken by the world simulator, which performs all 
calculations with respect to position, orientation, movement and collision of objects. 
The client mirrors the set of objects along with their positional data and synchronizes 
them with the simulator. It may interpolate movement, however, to compensate for a 
slow connection, and objects may also be animated according to their state. 

Usually, the simulation world does not need to know which area is currently 
observed in the viewer, so there is no feedback necessary between 3D client and 
simulator. To allow users to interact with the simulation, as in Dörner’s Psi3D, the 
client can also connect as an agent—thus, user-controled MicroPsi agents can be 
introduced into the environment. These agents receive their action commands not 
from a node net, but from the viewer clients. 

The viewer may also be used as an editing tool, because it allows distributing 
large numbers of objects quickly (such as trees forming a forest, plants making up a 
meadow). Changes made to the virtual environment within the 3D editor are sent to 
the framework and are integrated into the world simulation. 
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Figure 3.21: 3D viewer, showing “Island” and “Mars” scenarios 

MicroPsi’s 3D viewer has been implemented by David Salz and is described 
elsewhere (Salz 2005); here, I will not discuss its functionality in detail.  
 
The original implementation of Psi by Dörner’s group features an animated face to 
display emotional states of their agent. MicroPsi offers a similar element, the emotion 
viewer. This viewer offers a three-dimensional animation of a face, based on 39 
rotational bones, which approximate the muscles of the neck, chin, lips, tongue, nose, 
upper and lower eyelids, brows, eyeballs and so on. Each bone offers one degree of 
freedom, and each movement is limited by an upper and lower swivel angle. The state 
of the face can be described by a vector of 39 values that are constrained to an interval 
from 0 to 1, with 0.5 being the neutral position of each bone. 

Like the 3D viewer, the emotion viewer is an external application that 
communicates with the MicroPsi framework through a TCP/IP connection. The 
connection between viewer and agent is facilitated by a world adapter that translates 
the output of 39 data targets to the animation values of the bones. Thus, the face can 
be controled from a node net through 39 actuator nodes; if one of these actuator nodes 
receives a certain activation, the respective muscle moves into the respective position. 
By superimposing activation values, a wide range of facial expressions can be 
generated. 

To produce expressions that correspond to the states encoded within a MicroPsi 
agents, further processing has to take place within the node net: first, the proto-
emotional parameters (the urges and modulator values) have to be mapped onto 
expression parameters (such as pain, pleasure, surprise, agitation), and these have to 
be connected to the layer of facial actuators. The connections are then (manually) 
adjusted to generate believable facial expressions from patterns of muscular 
activation. 
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Figure 3.22: Emotional expression 

3.3.5 Controling agents with node nets: an example 

The MicroPsi framework is not only suitable for implementing the Psi theory; rather, 
the framework is a fairly generic runtime environment for multi-agent systems. Of 
course, its main advantages are its neurosymbolic components which are built around 
its graphical node net editor. 

Understanding the usage of the framework is probably served best by an example, 
and a simple Braitenberg vehicle (Braitenberg 1984) will do. Our virtual robot shall 
consist of a pair of light-sensitive sensors and a pair of actuators connected to wheels. 
The sensors and the actuators are to be connected in such a way that the vehicle is 
attracted to light sources in its environment. 

Before we can implement the agent’s control structure, we will need a light source 
and a robot:120 

In the simulator, we have to implement a lamp object, which is a visual object 
with a position and an orientation, and in addition with a function brightness(x,y,z), 

                                                 
120 The lowest level of the implementation (i.e. the Java classes) is supplied as an example with 
the MicroPsi toolkit. This is not the place to explain the programming code itself; rather, I will 
only describe what it does. 
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which, for each object in the world with a relative position (x,y,z) to the lamp, returns 
a value between 0 and 1. The brightness function must be monotonous and continous, 
of course, and it should mimic the falloff of light from a real lamp; in the easiest case, 
3 ( , , )x y z will suffice. (An advanced brightness function might consider obstacles, 

for instance.) 

 
Figure 3.23: Braitenberg vehicle with two sensors and light source 

Furthermore, we need an agent object. To sense light, we define a sensor, which has 
an offset (u,v) to the agent origin, and which in each cycle sums up the brightness of 
all lamps in the world, returning the result as an activation value. Here, the agent has 
two sensors, which are spatially apart and in the front of the agent (see figure 3.23). 

The movement of the agent depends on two wheels (W1 and W2), with different 
velocities v1 and v2. These velocities, together with the distance d between the wheels, 
determine the vehicle’s movement distance s and the rotation φ of the movement 
vector, for the next simulation step (figure 3.24).  

 
 

Figure 3.24: Movement of a Braitenberg vehicle 
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The distance s and the angle φ can simply be approximated as 

 ( )1 2
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2
s v v= +  (3.14) 

and 
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v v

d
ϕ −=  (3.15) 

whereby you might consider limiting v1 and v2 so that s does not become larger 
than a pre-defined maximum distance: because the simulation is discrete, large 
velocities amount to a coarse resolution. 

In every simulation step, the agent will be moved a distance s into the direction φ, 
and the agent itself is rotated by 2φ. 

We may assume v1 and v2 to be proportional to the value of the wheel actuators, 
and therefore we will need an agent action that updates them whenever the value of 
the actuators changes. 

The action is called by the Braitenberg vehicle’s world adapter. The world adapter 
consists of an action translator (which matches the data targets of the wheels with the 
agent action to set the wheel velocities) and a percept translator (which matches the 
value of the light sensors with a pair of data sources. 

 
After the definition of the agent and the lamp object, we have to select (or create) a 
world with an accessible ground plane and tell the editor how to display both types of 
object. We then set up a configuration that combines the object definitions, the world 
definition and a node net.  

In the node net editor, we create a new agent using this configuration. The agent 
will consist of two sensor nodes and two actuator nodes (figure 3.25). 

 
 
Figure 3.25: Basic nodes for Braitenberg vehicle 

Each sensor node is assigned to the data sources corresponding to the agent’s light 
sensors; from now on, the world writes activation values corresponding to the strength 
of the light source into the sensor nodes. (To see this activation, switch to the world 
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perspective, create a lamp object next to the agent object, and start the execution of 
the node net.) 

Likewise, the actuator nodes are each assigned to a data target (only the wheel 
data target should be available). Because no activation enters the actuator nodes, the 
agent does not move yet.  

 
 
Figure 3.26: Basic connections for Braitenberg vehicle 

The most straightforward way of creating a light-seeking agent consists in wiring the 
sensors and the actuators in such a way that the left sensor corresponds to the right 
wheel and vice versa (figure 3.26), because this way, the wheel that is further 
distanced from the light will rotate faster, creating a momentum towards the light 
source. In the world editor, the movement of the agent can be observed.  

 

 
 
Figure 3.27: Braitenberg agent moving towards light source 

The same simple node net control a physical robot, too (Bach 2003b, 2005a). All it 
takes is a world adapter that matches the input from photo detectors to the data 
sources, and the data targets to a control signal for the robot’s wheels. (Figure 3.28 
shows the setup for a network that controls a Khephera™ robot.) 
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Figure 3.28: Controling a Khephera™ robot with the MicroPsi toolkit 

3.4 Implementing a Psi agent in the MicroPsi framew ork 

Naturally, the first step in realizing the goals of the Psi theory within the MicroPsi 
framework is an implementation of Dörner’s original Psi agent. The current version of 
the framework includes the SimpleAgent, a steam engine vehicle akin to Dörner’s 
Emo, and destined to live in an island world, where it collects nutrients and water, 
avoids hazards (such as poisonous mushrooms and thorny plants), and explores its 
surroundings. The SimpleAgent has a motivational system that subjects it to urges, 
which give rise to motives, and these may in turn be established as goals. Goals are 
actively pursued, and plans are constructed and executed in order to realize them. 

Our implementation121 is aligned to Dörner’s model and shares most of its 
architecture (please refer to the description of the Psi agent for details). In some areas, 
especially with respect to perception and control, we have introduced changes that are 
due to the differences in the simulation and the opportunities offered by the 

                                                 
121 The best parts of the SimpleAgent have been implemented by Ronnie Vuine, while 
conceptual blunders are due to the author. 
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framework. The SimpleAgent is not a complete realization of the MicroPsi agent 
sketched above, but it already illustrates many of its goals. 

3.4.1 The world of the SimpleAgent 

The SimpleAgent has been designed to live in an island world of arbitrary size, filled 
with discrete objects, and surrounded by an impassable barrier of seawater. It can 
move in discrete orthogonal steps. Its sensing distance is limited to the movement 
distance, so every step brings it into a situation (or scene) with new objects.  

To maintain its functions, the agent needs nutrients, which it can obtain from 
mushrooms or from fruit. Fruits are part of certain plants, they can be dislodged from 
these plants with certain actions. Plants may change over time, i.e. they might grow 
new fruit and so on. Also, the agent depends on water, which is found in springs 
(replenishable) and puddles (exhaustible). 

Moving onto certain types of terrain, ingesting certain plants (such as poisonous 
mushrooms) or manipulating others (thorny bushes) may damage the agent. The 
island offers ‘healing herbs’ that may remedy the damage. 

 

 
 
Figure 3.29: SimpleAgent world (detail) 

Within each situation, the agent perceives using sensors that respond directly to the 
features of objects. Because a situation typically contains more than one object, the 
agent will have to select one before manipulating it, which is done using a focus 
action. The agent may distinguish between situations based on the objects contained 
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in them, and by keeping track of its movements between scenes. Conversely, similar 
objects can be kept apart due to the situations they are part of, and their different 
positions within situations. 

The interaction with the environment is facilitated with a set of operators 
(actions), such as eating, drinking, hitting, focusing the next object in the situation, 
moving northwards, moving southwards and so son. 

3.4.2 The main control structures of the SimpleAgen t 

The SimpleAgent consists of eight node spaces: 
- Main Control initializes the agent, sets up an initial world model and 

maintains the action loop. 
- Basic Macros holds the elementary actions and strategies, such as trial-and-

error, finding an automatism and planning. 
- Emotion/Motivation is the motivational system of the agent and calculates the 

parameters of the emotional system. 
- IEPS is the space of the immediate external percepts; here, primitive sensory 

data are organized into situations using hypothesis based perception 
(HyPercept). 

- Situation Memory holds working memory data, such as the current goals and 
the active situation. 

- Protocol Space contains the long-term memory of the agent. 
- Plan Space encloses the planner and the resulting plans. 
- Execution Space holds the currently active plan and maintains its execution. 
 

Unlike Dörner’s agent, the SimpleAgent does not need a single sense-think-act loop. 
Instead, its modules work in parallel. For instance, low level perception, the changes 
in the motivational system and the execution of the main action strategies take place 
in different regions of the agent’s node nets, and at the same time. Likewise, there are 
autonomous sub-processes, like a garbage collector that eliminates memory elements 
that have lost their links to other memory. In areas where the independent processes 
might interfere, one process can block others from changing the content of its node 
spaces during critical operations. 

The action loop of the Main Control space implements a simple Rasmussen 
ladder. It is realized as a simple script that is being recursively run by a script 
execution module. After starting the agent, the script waits for the initial world model 
to form and then enters an infinite loop, where in each step, the agent subsequently 
tries to realize one of the following alternatives:  

- find an automatism from the current situation to a goal (meanwhile specified 
by the motivational system),  

- construct a plan that leads to to the goal, 
- explore unknown options, or 
- do nothing. 
To maintain that order, each of these options, which are sub-linked to the loop, 

receives a permanent pre-activation of descending strength. Because the script 
execution module attempts the alternative with the highest activation first, the agent 
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always prefers automatisms over planning, and planning over trial-and-error. The 
agent thus acts opportunistically and goal-directed. 

 
 
Figure 3.30: Main action loop 

The Automatism module resides in the Basic Macros space and simply checks for an 
already existing strategy to get to the current goal. If the attempt to find an 
automatism fails, control is given back to the main action loop and plan construction 
is attempted.  

The planning behavior is located in the Basic Macros space as well, but links to 
the Plan Creation module, which is situated in the Plan Space and simply performs a 
backwards search through the space of memorized situations and actions, limited by 
time and depth. The plan elements are cloned from protocol memory and eventually 
aligned as a plan from the current situation to the goal situation. Should planning fail, 
then the current plan fragments are removed, and if it is successful, the Plan Creation 
module initiates its execution. Instances of executable plans are being held in the 
Execution Space and are carried out by a script execution module there. This node 
space also keeps track of the failure or success of plans and terminates them 
accordingly. 

The Trial-and-Error module is activated if no strategy for goal-directed action has 
been found—either because none is known, or because there is no goal that a known 
strategy can be applied to. Thus, the agent needs to acquire new strategies, and it does 
so by experimentation. 
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Figure 3.31: Trial-and-error script (simplified version) 

The agent enters its world without pre-defined knowledge, and learns by trial-and-
error what it can do to satisfy its demands and to avoid being damaged. However, in 
the face of high complexity, we have found that it needs pre-dispositions. Some 
actions require a whole chain of operations to be performed in the right order, for 
instance, food can sometimes only be obtained by first seeking a situation with a tree, 
then focusing that tree, then applying a shake-action to it, witnessing a fruit falling 
and finally ingesting it. As it turns out, the probability of that chain of actions 
happening by chance is prohibitively low. The chances of success are much better if 
there is a certain bias for some actions and against others. For instance, the agent 
should be much less inclined to de-focus an object without first trying something with 
it, and it should be very likely to just randomly walk away from a promising situation. 
Therefore, it does not try all actions with equal likelihood, but depending on a 
preference that is determined by a bias value for each action: 

 ( ) ( )( )1 1 random 0.5action actionpreference bias= + +  (3.16) 

where bias is a value between 0 and 1. 
Another difficulty arises in environments where benefits of behavior conflict with 

dangers. For instance, if the agent is confronted with mushrooms that are both 
nutritious (appetitive) and poisonous (aversiveand there is no alternative food source, 
it might poison itself. If the mushrooms are very appetitive, it may even choose them 
as a favorite food if other nutrients are available. In these cases, the agent either needs 
a strong bias against aversive food, a bias against dangerous objects, or a teacher. 
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3.4.3 The motivational system 

The SimpleAgent is driven by its physiological demands for nutrients, water and 
integrity, by its cognitive demands for uncertainty reduction and competence, and by 
its social demand for affiliation. The physiological demands are determined by the 
simulation world and measured by sensors as urge signals, while the other (internal) 
demands are expressed by urge signals within the agent. Together they form the basis 
of the motivational system, which is situated in the Emotion/Motivation Space.  

At the bottom of the motivational system is the module Emotional Regulation. 
This module calculates the emotional parameters from urges, relevant signals and 
values from the previous step. The module maintains the proto-emotional parameters 
of competence, arousal, certainty, resolution level (resLevel)  and selection threshold 
(selThreshold). These values are directly visible at the module’s gates. Any subsystem 
of the agent that is subject to emotional regulation will be linked to these gates, and 
receives the current emotional parameters via the spread of activation from there. 

 

 
 
Figure 3.32: Motivational system 

The Emotion Regulation module is also the place where the cognitive urges are 
determined: certaintyU and efficiencyU are calculated every step simply as difference 
between a target value and the actual value and visible at the respective gates. 

At the slots, the module receives the values of the ‘physiological urges’ (extU1..3), 
and the amount of change of certainty and competence, if some event occurs that 
influences the system’s emotional state (slots certaintyS and efficiencyS). The way we 
use these values is very similar to Dörner’s ‘EmoRegul’ mechanism. 

At every time step t the module performs the following calculations: 
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 ( )( )1max min ,0 ,efficiencyS competence
t t tcompetence competence in l−= +  (3.17)

 ( )( )1max min ,0 ,certaintyS certainty
t t tcertainty certainty in l−= +  (3.18) 

( competencel and certaintyl are constants to keep the values in range) 
 competence

t tefficiencyU target competence= −  (3.19) 

 certainty
t tcertaintyU target certainty= −  (3.20) 

( certaintytarget and certaintytarget are target values representing the optimum levels of 
competence and certainty for the agent.) 

 ( )max , , extU
t t t t tarousal certaintyU efficiencyU in competence= −  (3.21) 

 1t tresLevel arousal= −  (3.22) 

 1t t tselThreshold selThreshold arousal−=  (3.23) 

The urge signals are connected to motive nodes, which represent the need to fulfil 
these urges (through learning, the motive nodes are in turn associated with strategies 
that satisfy the demands). The module Motivation determines the dominant motive by 
selecting one of the motives, based on its strength, the selection threshold and the 
competence. As explained earlier in detail, the selection threshold is added as a bonus 
to the strength of the currently active motive to increase motive stability, and the 
competence is a measure for the expected chance of realizing the motive. 

Whenever a motive becomes dominant, its associations to situations that realize 
the motive become active, and these situations are identified as goals that are stored in 
a list. The final situation (the one that allows realizing the motive by a consumptive 
action) is the primary goal, and the Goal Selection module identifies opportunities to 
reach it. If the Situation Memory Space (the world model of the SimpleAgent) signals 
that goals are reached, the Goal Checker module removes them (along with obsolete 
subordinate goals) from the list. 

The Event Evaluation module is the last component of the motivational system. It 
checks for changes in the strength of motives, which correspond to the satisfaction or 
frustration of demands. Thus, it acts a pleasure/displeasure system, and transmits a 
signal that is used for learning. Whenever an event has a positive or negative valence 
(i.e. satisfies or frustrates demands), the connections between the current situation and 
the preceding situations in protocol memory are reinforced. Because of a decay of the 
strength of connections in protocol memory, the agent tends to store especially those 
memory fragments that are relevant to reaching its goals. 

Learning and action selection are the two main tasks of the SimpleAgent’s 
motivational system.  

3.4.4 Perception 

Perceptions of the SimpleAgent are stored generated in the Immediate External 
Percepts Space, organized in Situation Memory as a world model and stored 
subsequently in Protocol Memory. They are organized as trees, where the root 
represents a situation, and the leafs are basic sensor nodes. A situation is typically 
represented by a chain of por/ret links that are annotated by spatial-temporal 
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attributes. These attributes define how the focus of attention has to move from each 
element to sense the next; thus, the memory representation of an object acts as an 
instruction for the perception module on how to recognize this situation. 

Situations may contain other situations or objects; these are connected with 
sub/sur links (that is, they are ‘part of’ the parent situation). We refer to situations that 
consist of other situations as ‘complex situations’, in contrast to ‘simple situations’ 
that contain only single or chained sensor nodes sur/sub-linked with a single concept 
node. 

Currently, the agent is equipped with a set of elementary sensors on the level of 
objects (like sensors for water-puddles or banana objects). In Dörner’s original 
design, elementary sensors are on the level of groups of pixels and colors; we have 
simplified this, but there is no real difference in the concept. Using more basic sensors 
just adds one or two levels of hierarchy in the tree of the object representation, but the 
algorithm for perception remains the same and is implemented in the Basic Hypercept 
module in the the Immediate External Percepts Space. All the agent learns about a 
virtual banana, for instance, stems from the interaction with this class of objects, i.e. 
after exploration, a banana is represented as a situation element that leads to a 
reduction in the feeding urge when used with the eat-operator, might be rendered 
inedible when subjected to the burn-operator, and which does not particularly respond 
to other operations (such as shaking, sifting, drinking and so on). The drawback of the 
current implementation that abstains from modeling visual properties is that it does 
not allow the agent to generalize about colors etc., and that the mechanisms of 
accommodation and assimilation can not be emulated for low-level percepts. 

3.4.4.1 Simple hypothesis based perception (HyPerce pt) 
Whenever the agent enters a situation that can not be recognized using existing 
memories, it is parsed using the accommodation process in the Schema Generation 
Module in the Immediate External Percepts Space, resulting in a chain of spatially 
por/ret-linked elements, which are sub/sur-linked to a common parent: the situation 
they are part of. But before this happens, the agent attempts to match its perception 
against already known situations; if it already possesses a schema of the situation, it 
uses the module SimpleHyPercept for recognition.  

Hypothesis based perception starts bottom-up, by cues from the elementary 
sensors (which become active whenever a matching object or feature appears). It then 
checks, top-down, whether object or situation hypotheses activated by these cues 
apply. If, for instance, the agent encounters a banana object and focuses its sensors on 
it, the corresponding sensor node becomes active and the perception algorithm carries 
this activation to the concept node that is sur-connected with the sensor (i.e. the 
banana concept). It then checks for matching situation hypotheses, i.e. situations that 
contained banana objects in the past. If an object or situation can only be recognized 
by checking several sensors, the agent retrieves all representations containing the 
active sensor as part of a por/ret-chain from protocol memory. These chains represent 
the adjacent sensors that the agent has to check, along with their spatial relationship, 
to establish which of the object and situation candidates can be assumed to be valid. 
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Figure 3.33: Building a hierarchical representation of a situation (simplified) 

HyPercept becomes faster by biasing the set of candidate hypotheses according to 
their probability, so more likely hypotheses are checked first. This applies especially 
to situations that have been recently sensed (i.e. the agent will keep his hypothesis 
about the environment stable, if nothing happens to disprove it). Besides that, the 
SimpleAgent prefers hypotheses that contain more instances of the cue feature over 
those that have less. 

Given that list of hypotheses, the perception module now checks one after the 
other. To check a hypothesis, the por/ret-path of the hypothesis’ elements is read from 
memory. The sensors of the agent are then moved to the element at the beginning of 
the por/ret-chain, then along the por-path to the next position, and so on until all 
elements have been “looked at”. After checking each element, the sensor must verify 
its existence in order not to disprove the hypothesis. If all elements of the situation 
have been successfully checked, the hypothesis is considered to be consistent with the 
reality of the agent environment.  

If one of the elements does not become active, the current hypothesis is deleted 
from the list, and the next one is checked. If a hypothesis is confirmed until the end of 
the por/ret-chain, it is considered to “be the case” and linked as the new current 
situation. 

The Psi theory suggests that perception can undergo emotional modulation, 
especially with respect to the resolution level: if it is low, fewer elements of a 
hypothesis need to be checked for the hypothesis to be considered true. As a result, 
perception is faster but inaccurate when resolution is low, but slower and precise if 
resolution is high. Because the SimpleAgent does not perform low-level feature 
detection (i.e. works with relatively few discrete objects at a time) this has no 
noticeable effect, though. 

3.4.4.2 Integration of low-level visual perception 
Low-level visual perception has been omitted in the SimpleAgent—primarily because 
the author is not convinced that this particular addition of complexity is going to be 
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warranted by the results. The rigid mechanism of combining pixels into line-segments 
and shapes employed in Dörner’s Psi agent is no accurate model for low-level 
perception, but scaffolding that acts as a place-holder for a more ‘scruffy’ low-level 
perceptual strategy. A proper model of visual perception should be capable of 
processing real-world images as well (or at least to a degree), and it should do so in a 
plausible manner. 

We do not think that our current level of understanding of hypothesis based 
perception can be scaled up for the processing of real-world data, at least not with a 
literal understanding of the suggestions laid down in the Psi theory. Dörner suggests 
using detectors for local line directions and arranging these into hierarchical 
representations. In order to illustrate this, a Backpropagation module for neural 
learning has been implemented and used for line-detection. 

The backpropagation module is assigned sets of nodes u, whereby each set 
comprises a layer, and the output gates o of each unit have a sigmoidal activation 
function. Activation enters through through the input layer (ni nodes i, typically 
connected to sensor nodes) and is propagated to and through sur-connected hidden 
layers (nh nodes h), until an output layer (of nk nodes k) is reached. Initially, the 
weights of the links between the layers are set to small random values (for instance, 
between -0.05 and 0.05). The layered network is now subjected to a large set of 
training data ,x t

��
, where x

�
 is an the vector of the activations entering the input 

layer, and t
�

 is the desired result vector of activations that is to be obtained at the 
output layer.  

Let wji be the strength of the link between two nodes i and j, and aji the activation 
that j receives from i. During testing, the activation vector x

�
 is spread from the input 

layer towards the output layer. The module then calculates the differences of the 
output with the target values: ( ) ( )1k k k k ko o t oδ = − − , and traces the differences back 
to the input layer as ( )1h h h kh ko o wδ δ= − ∑ . The weights of the network are then 
updated according to ji ji jiw w w← + ∆ , where ji j jw learningRate x iδ∆ = ⋅  (see, for 
instance, Mitchell 1997). 

Neural learning using backpropagation can be applied directly to camera 
images.122 We used horizontal, vertical and diagonal line-detectors as arrays of 10 by 
10 sensor nodes with a layer of 40 hidden neurons that terminated in four output 
nodes. After training using line segments with artificial noise, it was possible to 
identify such segments in camera images as well. Unfortunately, these segments are 
very rough and relatively instable, whenever an object moves, and the application of 
HyPercept on such data does not provide reliable results, with the exception of simple 
geometric shapes, such as the outlines of books and CDs. Tasks like facial recognition 
clearly require a different approach. 

                                                 
122 Here, an input stream from a web-camera was used, and an edge-detection filter applied. 
The application of a complete scan with a ‘foveal arrangement’ of a matrix of 10 by 10 sensor 
nodes took roughly 0.4s per frame. This process could be improved by only scanning areas of 
interest. 
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Figure 3.34: Low level perception of sensory features with backpropagation 

While it is not surprising that the detection of instable line segments does not 
integrate well with an essentially rule-based top-down hypothesis tester, this does not 
mean that the general idea of HyPercept with its bottom-up/top-down strategy is at 
fault. Instead, a much more general implementation of this principle is needed. A 
good starting point might be the use of Gabor filters instead of simple line detectors at 
the input layer, and a re-conceptualization of HyPercept using a variable number of 
layers with radial basis function networks, with a gradual stabilization of hypotheses. 
Research into visual perception is likely going to be one of the most fascinating and 
fruitful areas of extension to the Psi theory, because it will require the designers to 
depart from discrete symbolic representations and foster a deeper understanding of its 
relationship to distributed processing.  

Extending hypothesis based perception will also need to consider the self-
organization of ‘visual grammars’, the abstraction of objects into hierarchical 
categories of components. One possible strategy consists in reducing visual shapes 
into skeletons, so-called shock graphs (Siddiqi et al. 1998). Shock graphs can be 
represented as hierarchies of nodes, where individual nodes correspond to branching 
points or end points in the skeleton, and the links to the interrelations between them. 
We have used these graphs for the supervised learning of visual prototypes, and then 
matched these prototypes against the shock graph descriptions of new objects for 
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recognition (Bach, Bauer and Vuine 2006).123 Nevertheless, this approach is only a 
starting point to explore models of visual perception, and perceptual cognition as a 
topic goes much beyond the scope of this introduction. 

3.4.4.3 Navigation 
The SimpleAgent recognizes situations by the particular arrangement of objects that 
make them up. This has the benefit that the agent may be “highjacked” and put into a 
different position, and still be able to get back its bearings. But obviously, the 
arrangement of objects in a scene may vary: for instance, if the agent devours a piece 
of fruit, the corresponding object is no longer part of the situation. While this creates a 
new situation with respect to the local availability of fruit, it should not create a new 
situation with respect to navigation. In other words, the agent needs to discern 
between immobile features that can act as landmarks, and variable features, which are 
not a pre-requisite for classifying a situation (or object).  

The SimpleAgent uses a simplification as a solution for this problem: using a 
source of negative activation, it inhibits those objects (or features) that are likely not 
suitable for landmarks. Each type of element of situations is linked to this inhibitor, 
and the strength of the link is adjusted according to the estimated probability of the 
element being a not a reliable property of the situation. (Currently this estimate is 
adjusted only whenever the agent witnesses a change in a situation.) As a result, the 
agent may use different parts of a situation description for planning than for 
recognition—i.e. it can determine a place even if features have changed, but may 
incorporate the existence of these features into its behavior. 

Locomotion in the SimpleAgent is constrained to discrete steps, which simplifies 
the classification of situations. Continuousmovement requires that the 
conceptualization of scenes allows objects to belong to several scenes at the same 
time, and leads to a continuously changing world model as the agent navigates 
through its environment. These changes are incompatible with the situation 
recognition and planning of the SimpleAgent and are the subject of different 
implementations (see, for instance Bach 2003b).124  

3.5 Instead of a Summary 

It is difficult to present a conclusion of this work, because it does not solve a list of 
problems, present a set of solutions or prove a list of statements. Instead, it consists of 
three summaries: the first one covers Dörner’s theory of the mind; the second, much 
more fleetingly, the related discussion in the different related disciplines of Cognitive 
Science; the third is concerned with an overview of a technical framework that serves 
as a toolkit for implementing models of the theory. 

Currently, the most comprehensive realization of the Psi theory by Dörner’s group 
is embodied in the steam vehicle agents of his “Island” simulation (although new 

                                                 
123 A complete implementation of neural prototyping of shock graphs in MicroPsi has been 
done and evaluated by Colin Bauer (Bauer 2004). 
124 Autonomous region mapping and wayfinding using Voronoi graphs with a continuously 
moving MicroPsi agent is the subject of forthcoming work by Markus Dietzsch. 
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work is certainly under way). This steam vehicle is the paragon of the software agents 
discussed here, and they does not stray too far off its tracks. The changes found in our 
implementation are largely of a technical nature: its realization as an AI architecture 
aimed at a better reusability of the model, its implementation as a multi-agent system 
was meant to improve its suitability for experiments, and the framework that it was 
based on made it easier to use it as a tool for following the neuro-symbolic principles 
it was supposed to embody. While the framework and the agent implementations have 
since found extensions beyond that point, the author feels that these do not belong 
here, lest they distract from the goals of this work—to gain an understanding of the 
Psi theory.  

And yet: I do not think that MicroPsi and the simulations introduced on these 
pages should mark the end of our discussion. We are barely at the beginning of our 
journey. 

3.5.1 The “Hard Problem” 

The simple agent implementations of the previous section illustrate the first step of 
our exploration of the Psi theory, and the neuro-symbolic toolkit that they are based 
on acts as a starting point for current and future research. The approach of the Psi 
theory—and this includes the work presented here—is not easy to pin down to the 
field of a particular scientific discipline. Psi and MicroPsi are not akin to most work 
in contemporary psychology, because they do not focus on experiments with human 
or animal subjects, and, in a narrow sense, they do not even aim for a model of human 
psychology. As an agent architecture, an approach for modeling emotion, a multi-
agent system or an artificial life environment, MicroPsi is not alone in the area of 
Artificial Intelligence. However, its main goal is different from finding technical 
solutions to engineering problems, or to advance the formal understanding of 
mathematical domains; thus, it does not yield a particular algorithmic solution that 
could be pitched against competing algorithms, or a particular formalization that 
advances the modeling of logics, reasoning methods or the development of 
ontologies, which makes it somewhat untypical in the domain of computer science. 
Instead, Psi and MicroPsi represent an attempt of to foster an understanding of the so-
called “hard problem” of human and artificial intelligence. 

Gaining such an understanding is a difficult task, not least because there is no 
general agreement on what the “hard problem” really is. In his famous essay “Facing 
up the the problem of consciousness”, David Chalmers identified a small but not 
exhaustive list of easy problems (Chalmers 1995): 

- the ability to discriminate, categorize, and react to environmental stimuli;  
- the integration of information by a cognitive system;  
- the reportability of mental states;  
- the ability of a system to access its own internal states;  
- the focus of attention;  
- the deliberate control of behavior;  
- the difference between wakefulness and sleep. 
He notes that “there is no real issue about whether these phenomena can be 

explained scientifically. All of them are straightforwardly vulnerable to explanation in 



 
 

 
 
 

280 The MicroPsi architecture 

terms of computational or neural mechanisms,” and asks what the hard problem 
might be, if not an integration of all those easy problems. For Chalmers, the hard 
problem is understanding phenomenal experience.  

At a glance, the Psi theory is all about the easy problems—although we have not 
looked at many of the interesting “easy topics” here, such as subjectivity and 
personhood, language, theory of mind and sociality. Yet the most interesting aspect of 
the Psi theory is that it attempts to find answers to the hard problem: how are the 
individual faculties of a cognitive system integrated into a whole that perceives and 
acts, anticipates and feels, imagines and thinks? Dörner’s Psi theory is a valuable 
starting-point to a discussion on an overall map of the mind. 

MicroPsi is an attempt to carry on with this discussion, by summarizing the points 
of the Psi theory, and by rephrasing them for different disciplines of the cognitive 
sciences. The result of this attempt is a set of building blocks for a cognitive 
architecture. By now, these building blocks have found applications for cognitive 
modeling, robotics and education. 

3.5.2 Tangible and intangible results 

While the development of the MicroPsi framework was a collaborative effort that 
took several years and resulted in a large software project, MicroPsi addresses only a 
small part of the Psi theory. It demonstrates autonomous agents that are situated in 
virtual worlds. MicroPsi agents are capable of emotional modulation, and they can 
give a basic expression to these states. Even more importantly, they are motivated 
through a polythematic urge system, which enables the exploration of their 
environment and the autonomous learning of behavior. MicroPsi also includes simple 
solutions for the problems of planning, hypothesis based perception, and perceptual 
categorization, it has served as a robot control architecture and even as a framework 
for the evolution of artificial life agents. 

Researchers that want to work with MicroPsi are supplied with an environment to 
conduct their experiments, which includes viewers, editors, customizable simulation 
worlds, networking capabilities, a web frontend to run remote-controled simulations 
over the internet and modules to integrate camera input and robotic actuators. 

MicroPsi is currently used outside our group, as a tool for psychological 
experiments, as a framework for the simulation of human behavior, and in university 
education. 

I believe that the more important results were less concrete, however. They 
consisted in illustrating the first steps of gaining an understanding of what it means to 
model the mind, thereby adding to the most fascinating discussion of all. In my view, 
the Psi theory provides an exciting and fruitful perspective on Cognitive Science and 
the philosophy of mind. 
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